Pilot area GE 2:

Effects of climate change on the salt-/fresh water distribution in coastal aquifers of Lower Saxony

Nico Deus

State Authority for Mining, Energy and Geology

Challenges:

- Seawater intrusion due to climate change
- Increasing water demands
- Buffering of freshwater for dry periods

Marsh area

- low groundwater recharge,
- Groundwater level between
 -1 & 1m NHN
- > Extensive drainage,

Moraine area

- High groundwater recharge,
- Groundwater level between
 5 to 15m NHN

Effects of climate change on the salt-/fresh water distribution in coastal aquifers of Lower Saxony?

Deducing the distribution of Salt- & fresh water as input for the flow model

Modeling the impact of climate change on the salt-/fresh water distribution

Modelling the climate change induced variations in salt-/freshwater distribution

Conceptual model

Software: GMS 10.3.7 based on Modflow

(a) Calibration of Steady State Flow Model		\rightarrow (K_h and K_v
	Output GWL distribution as initial condition		
(b) Calibration of Transient Flow Model [2009 – 2013]			$\mathbf{S}_{\mathbf{y}}$ and $\mathbf{S}_{\mathbf{s}}$
Monthly stress period	Output GWL distribution as initial condition		
(c) Validation of Transient Fl			
Monthly stress period			
(d) Calibration of transport Model [2009]			Θ and α
Scenario analysis	↓		

 K_h : Horizontal hydraulic conductivity; K_v : Vertical hydraulic conductivity; S_y : Specific yield; S_s : Specific storage, $\Theta = Eff$. Porosity, $\alpha = D$ is persivity

Boundary conditions

Flow Initial condition : Interpolated heads for December 2008 Transport Initial condition : Helicopter borne Electromagnetic chloride distribution.

Eq FWH: Equivalent freshwater head

▲ Chloride boundary segments (mg/l)

Groundwater flow direction (transient flow)

Head (m) - 29.5 - 25.8 - 22.2 - 18.5 - 14.8 - 11.2 - 7.5 - 3.8 - 0.2 - -3.5

Flow

(m/d)

Velocity

0.22 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00

TOPP Interreg North Sea Region European Regional Development Fund

Global mean sea level rise (m)

Year	RCP6.0	<u>RCP8.5</u>
2007	0.03 (0.02 to 0.04)	0.03 (0.02 to 0.04)
2010	0.04 (0.03 to 0.05)	0.04 (0.03 to 0.05)
2020	0.08 (0.06 to 0.10)	0.08 (0.06 to 0.11)
2030	0.12 (0.09 to 0.16)	0.13 (0.10 to 0.17)
2040	0.17 (0.12 to 0.21)	0.19 (0.14 to 0.24)
2050	0.22 (0.16 to 0.28)	0.25 (0.19 to 0.32)
2060	0.27 (0.19 to 0.35)	0.33 (0.24 to 0.42)
2070	0.33 (0.24 to 0.43)	0.42 (0.31 to 0.54)
2080	0.40 (0.28 to 0.53)	0.51 (0.37 to 0.67)
2090	0.47 (0.33 to 0.63)	0.62 (0.45 to 0.81)
2100	0.55 (0.38 to 0.73)	0.74 (0.53 to 0.98)

Szenario from IPCC report 2013

(a) Average recharge from 2010-2040
(b) Average recharge from 2040-2070
(c) Average recharge from 2070-2100

Szenario from water balance model mGrowa18 (LBEG)

Recharge Rate (mm/yr)

200 - 42	200 - 30	100 - 20	0 - 100	-600 - 0	

Chloride concentration difference maps – Average

GEOZENTRUM HANNOVER

Niedersachsen. Klar.

Managed Aquifer Recharge

Possible locations (min. 400 x 400 m)

- Calibrated model (2009-2013)
- All boundaries are kept constant
- Recharge was changed to consider effect of climate

change

- Average recharge 2010-2040.
- 20 Mio m³ per year water recharge by MAR

Managed Aquifer Recharge

Head at -20 m ASL without MAR

3 observation points

2.25

2

Head at -20 m ASL with MAR

After 2 years

MAR location

Managed Aquifer Recharge

After 2 years

Landesamt für Bergbau, Energie und Geologie

3 observation points

MAR location

950 900 850 (b) 0 30 60 90 120 150 180 210 240 270 300 Week after simulation starts

Chloride concentration with MAR
Chloride concentration without MAR

(a) 9 % reduction of chloride(b) 14 % reduction of chloride

(c) 14 % reduction of chloride

Regional flow model

- A calibtrated and validated groundwater flow model has been developed
- Recharge and drainage are the main mechanism that control the regional flow and water budget.
- Only very few monitoring wells are located near the Elbe river and the sea.
- Hence, the flow pattern might not be accurately reproduced near the boundaries

Regional transport model

- A calibrated transport model has been developed
- No density effect has been considered
- Due to lack of chloride concentration near the boundaires, the calibration is not well established
- Initial condition for the transport model needs further improvement

Climate change scenario

- Three scenarios based on RCP 8.5 (Min, Average and Max) have been simulated
- The chloride distribution largely controlled by the recharge
- Chloride distribution changes at the Marsch area and near the sea side
- The model gives a first overview of climate change impact on salinity distribution.
- For water resources planning, the model must be improved with current monitoring data

Groundwater Buffering – managed aquifer recharge

- Managed aquifer recharge can improve the water quality (e.g., chloride) of the aquifer
- Care should be taken to avoid flooding
- Detail fine scale groundwater model should be developed for better understanding of MAR

Many thanks for your kind attention!

Landesamt für Bergbau, Energie und Geologie GEOZENTRUM HANNOVER Stilleweg 2 30655 Hannover Telefon +49 (0)511 643 0 Telefax +49 (0)511 643 2304 E-Mail: info@lbeg.niedersachsen.de

www.lbeg.niedersachsen.de

