Status Overview

Decommissioning offshore wind farms, recycling, reusing and selling of components/materials

About Me

Amogh Gokhale

MSc Sustainable Energy, DTU

Specialization Wind Energy

https://www.linkedin.com/in/amogh-gokhale/

🚱 : Pune, India

Contents

- Background
- Data aggregation and assumptions
- Case Study
- Results
- Conclusion
- Recommendations

Background: Decommissioning

- Limited practical experience
 - 5 offshore wind farms decommissioned
- Till 2023 around 225 offshore wind turbines predicted to be decommissioned¹
- Problem rising and need to make Wind Turbines fully 'green' alternative
- Post decommissioning material handling needs improvement
- Opportunity to make the process Circular

Source- 1: Market Analysis Report, DECOM Tools project

Background: Circular Economy

Closed-Loop system

Source- 1: Catherine Weetman

- Main goal responsible resource consumption
 - Maintain highest value through cyclical loops
 - Increase product lifetime, process efficiencies

• Prefer processes with minimal effort to maintain the functionality

Circular economy representation¹

Data gathering and assumptions

- Material data gathered from 32 published LCA studies
 - 15 Vestas studies
- **Power form** of equation $M = a X^{b}$ used for curve fitting of Materials in a turbine
- Copper, Aluminium, Magnets, Cast Iron ~ Capacity (MW)
- Steel ~ Hub Height (m)
- Fibre Glass, Epoxy ~ Rotor Diameter (m)
- Foundation (Steel) ~ Capacity (MW)

Offshore turbine material = **Onshore** turbine material

Case Study: Utgrunden Offshore Wind Farm

Location: Sweden

Operational Years: 18 Decommissioned Year: 2018 Wind Farm Owner: Vattenfall

Wind Turbine: Enron Wind 70/1500

Hub Height: 65 m

Wind Turbine Capacity: 1.5 MW

Number of Turbines: 7

Capacity Factor: 34%

Foundation: Monopile

Distance from shore: 5 km

Screen shot of location of Utgrunden OWF¹

Source- 1: 4C Offshore

Results: Material Ranking

Materials	Mass (%)	Rank
Foundation	51.1%	1
Steel	33.9%	1
Cast Iron	6.0%	2
Cables	3.4%	3
Fibre glass	3.3%	3
Epoxy	1.3%	4
Copper	0.4%	5
Aluminium	0.3%	5
Magnet	0.2%	5

Total wind farm mass : 2969 tons

Materials	Monetary	Rank
	Value(%)	
Cables	32.1%	1
Steel	30.6%	1
Foundations	25.1%	1
Copper	8.5%	2
Cast iron	4.4%	3
Aluminium	1.7%	4
Magnet	0.5%	4
Ероху	-0.8%	5
Fibre glass	-2.1%	5

Total WF monetary potential : 704714 EUR

Results: Material Ranks

CO₂ emissions after recycling

Materials	Recycling rate	Rank
Copper	98%	1
Cast Iron	98%	1
Aluminium	95%	1
Steel	92%	2
Cables	90%	2
Foundations	50%	3
Fibre glass	15%	4
Epoxy	15%	4
Magnet	5%	5

Materials	GHG emissions	Rank
	(ton CO2-eq / ton)	
Magnet	12.51	1
Fibre glass	5.82	2
Ероху	2.80	3
Aluminium	2.77	3
Copper	2.27	3
Cables	1.68	4
Foundations	1.42	4
Steel	0.67	5
Cast Iron	0.37	5

Results: Material Ranks

Materials	Complexity Rank
Magnet	1
Fibre glass	1
Epoxy	1
Cables	2
Foundations	3
Aluminium	4
Copper	4
Steel	5
Cast Iron	5

Complexity based on difficulty of recycling

Materials	Criticality
	Rank
Magnet	1
Steel	2
Cast Iron	2
Aluminium	3
Fibre glass	4
Epoxy	4
Cables	4
Copper	5

Criticality based on economic importance and supply risks

Conclusion

Ranked materials according to various parameters

- Steel : quantity
- Cable : environmental impacts, monetary potential
- Blades : complexity, image
- Magnets : criticality, environmental impacts
- Foundation (Steel) : regulations
- Increased focus on more effective disposal required

Recommendations

- 1. Improving lifetime extension
- 2. Increase focus on reuse, refurbish of components
- 3. Improve supply chain for cable, magnet, blade
- 4. Research effective foundation removal
- 5. Blades refurbishing, remanufacturing

Waste hierarchy according to CE principles¹

Source- 1: Wind Europe, Accelerating Wind Turbine Blade Circularity

Background | Data aggregation | Case study | Results | Conclusion | Recommendation

