PROBABILISTIC AND RISK-BASED FATIGUE REASSESSMENT FOR WIND TURBINE TOWERS

DECOM TOOLS CONFERENCE 9/2-2021

JANNIE S NIELSEN DEPARTMENT OF THE BUILT ENVIRONMENT AALBORG UNIVERSITY, DENMARK

DENMARK

About the speaker

Jannie Sønderkær Nielsen, Associate professor, Risk & Reliability research group, Department of the Build Environment, Aalborg University, Denmark

- Participation in various national and EU projects on O&M, life extension and probabilistic design such as: REL-OWT, NORCOWE, LEANWIND, MANTIS, LIFEWIND, CORTIR, PROBWIND, COST Action TU1402, IEAWIND T42, IEAWIND T43
- IEC Committee Member: TC 88/PT 61400-9
- JCSS member (Joint Committee on Structural Safety)

Mission

Increase the sustainability and decrease risks associated with wind farm projects ensuring resilient renewable energy supply by providing risk-informed decision support through the lifecycle considering planning, design, installation, operation, and decommissioning.

Decision scenario

- A wind farm has been operating for the planned life of 20-25 years
 - Options:
 - Continue operation
 - Life extension
 - Repowering
 - Decommision

• Does the tower and substructure have sufficient fatigue life?

Deterministic fatigue reassessment

- Application of updated data compared to design
 - Loads analysis
 - Operational analysis
- Deterministic design equation for fatigue failure (bi-linear SN curve)

•
$$G(z,t) = 1 - \nu \cdot t \left(\frac{(\gamma_f \gamma_m)^{m_1}}{K_{1,C}} D_{BL1,tot}(z) + \frac{(\gamma_f \gamma_m)^{m_2}}{K_{2,C}} D_{BL2,tot}(z) \right)$$

• D_{BL} : Fatigue damage (mean of $\Delta \sigma^m$) estimated based on distribution of wind speed and 90% quantile of turbulence (hidden safety)

Methods for decision making structures

• ISO 2394:2015 General principles for reliability of structures

Risk-informed decision making	 Used to derive optimal target reliability for reliability-based methods
Reliability-based decision making	 Used to calibrate safety factors for semi- probabilistic method
Semi-probabilistic method	 Used for design (also referred to as deterministic design)

Probabilistic assessment

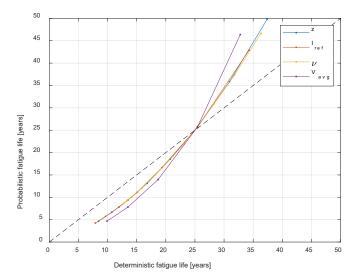
• Probabilistic limit state equation for fatigue failure (bi-linear SN curve)

•
$$g(z,t) = \Delta - \nu \cdot t \left(\frac{(X_{load})^{m_1}}{K_1} D_{BL1,tot}(z) + \frac{(X_{load})^{m_2}}{K_2} D_{BL2,tot}(z) \right)$$

- Fatigue damage calculated based on joint distribution of wind speed and turbulence
- Was used to calibrate partial safety factors for deterministic method

•
$$G(z,t) = 1 - \nu \cdot t \left(\frac{(\gamma_f \gamma_m)^{m_1}}{K_{1,C}} D_{BL1,tot}(z) + \frac{(\gamma_f \gamma_m)^{m_2}}{K_{2,C}} D_{BL2,tot}(z) \right)$$

• The deterministic method is a simplification of the probabilistic



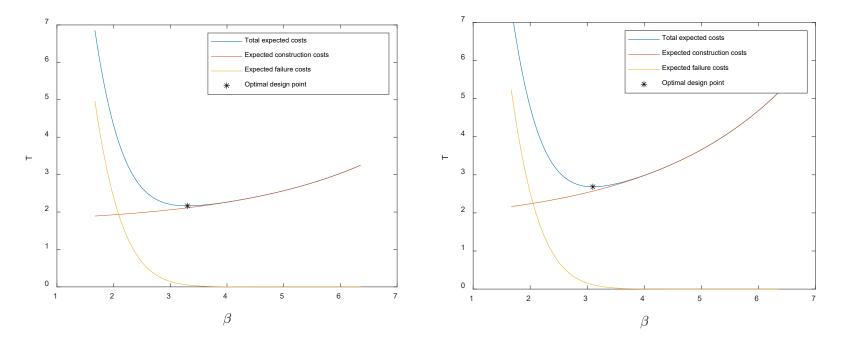
Probabilistic assessment – Example

- Assumptions
 - Model used for calibration of partial safety factors
 - Surrogate used for loads analyses
 - Starting point design lifetime 25 years
 - $V_{avg} = 8 \text{ m/s}$
 - $I_{ref} = 14\%$
- Result
 - Probabilistic model leads to longer fatigue lives

Target reliability

- Target reliabilities for new wind turbines
 - IEC61400-1 ed.4: $\beta = 3.3 \left(P_f = 5 \cdot 10^{-4} \right)$
- Based on table in ISO2394, derived based on risk-based method, economic optimization (maximize benefit costs) considering:
 - Consequence of failure
 - Relative cost of safety measure

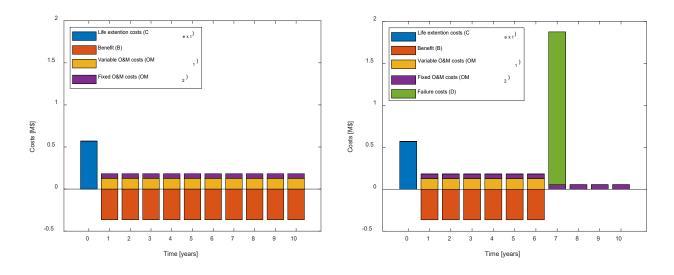
Relative cost of safety measure	Consequences of failure		
	Minor	Moderate	Large
Large (A)	$\beta = 3.1 \left(P_f \approx 10^{-3} \right)$	$\beta = 3.3 \left(P_f \approx 5 \cdot 10^{-4} \right)$	$\beta = 3.7 \left(P_f \approx 10^{-4} \right)$
Normal (B)	$\beta = 3.7 \left(\frac{p}{T_f} \sim 10^{-4} \right)$	$\beta = 4.2 \left(R_{\gamma} \approx 10^{-5} \right)$	$\beta = 4.4 \left(P_f \approx 5 \cdot 10^{-6} \right)$
Small (C)	$\beta = 4.2 \left(P_f \approx 10^{-5} \right)$	$\beta = 4.4 \left(P_f \approx 5 \cdot 10^{-6} \right)$	$\beta = 4.7 \left(P_f \approx 10^{-6} \right)$



Wind turbines 3.3 (5 10⁻⁴)

Target reliability for existing structures

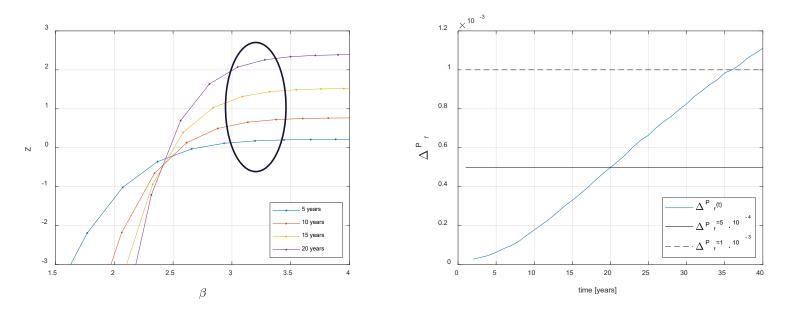
- More expensive to increase reliability of existing structures
- The cost of conservatism is so much larger in assessment than in design



Target reliability for life extension

 Optimization for life extension – The objective function is the expected present value of the profit; i.e. the expected present value of the benefits minus the costs.

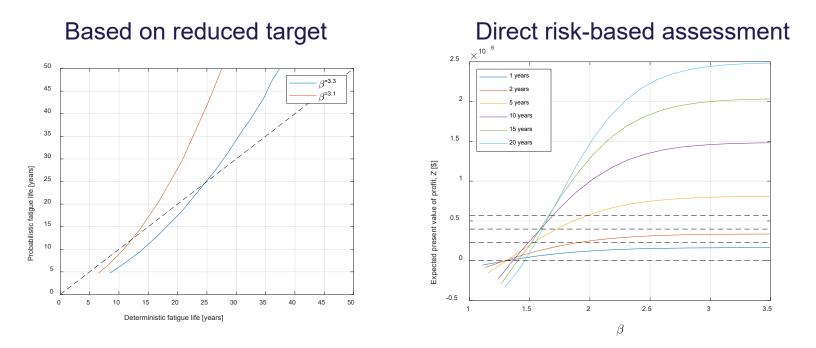
Nielsen JS, Sørensen JD. Risk-based derivation of target reliability levels for life extension of wind turbine structural components. Wind Energy. 2021;1–18. <u>https://doi.org/10.1002/we.2610</u> (Open Access)



Target reliability for life extension

- A reduction from 3.3 to 3.1 will generally not make life extension infeasible
 - But will result in many additional years of operation

Nielsen JS, Sørensen JD. Risk-based derivation of target reliability levels for life extension of wind turbine structural components. Wind Energy. 2021;1–18. <u>https://doi.org/10.1002/we.2610</u> (Open Access)



Risk-based assessment for case study

Assessment for life extension

Nielsen, JS; Miller-Branovacki, L; Carriveau, R. Probabilistic and risk-informed life extension assessment of wind turbine structural components. *Preprints* **2021**, 2021010353, Accepted for publication in Energies https://www.preprints.org/manuscript/202101.0353/v1

Repowering

- Reliability based assessment
 - Additional capacity might be found using the probabilistic method compared to the deterministic
- Risk-based assessment
 - Much cheaper to reuse the substructure, thus the costs of increasing safety is high – could allow for a lower reliability level.

Conclusions

- Reiliability and risk-based assessment could be used for assessment of existing structures
 - Clear economic benefit
 - Clear sustainability benefit

Thank you for your attention!

Jannie S. Nielsen (jsn@build.aau.dk) Associate Professor

Aalborg University (AAU) Department of the Built Environment Risk and Reliability research group

- Nielsen JS, Sørensen JD. Risk-based derivation of target reliability levels for life extension of wind turbine structural components. Wind Energy. 2021;1–18. <u>https://doi.org/10.1002/we.2610</u> (Open Access)
- Nielsen, JS; Miller-Branovacki, L; Carriveau, R. Probabilistic and risk-informed life extension assessment of wind turbines structural components. *Preprints* 2021, 2021010353, Accepted for Publication in Energies <u>https://www.preprints.org/manuscript/202101.0353/v1</u>

