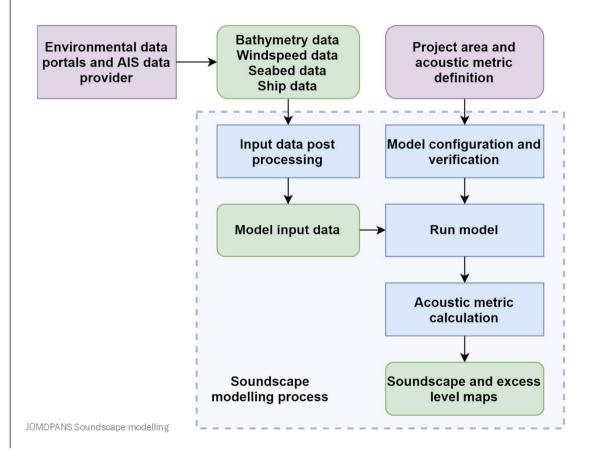


EUROPEAN UNION

JOMOPANS

JOINT MONITORING PROGRAMME FOR AMBIENT NOISE IN THE NORTH SEA

WP4 - SOUNDSCAPE MODELLING



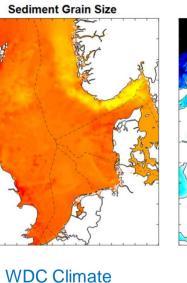
UNDERWATER AMBIENT SOUND MONITORING

-) Underwater sound pressure:
 - > varies with location, time and frequency
 -) generated by multiple (anthropogenic and natural) sources
-) Modelled sound maps:
 - > two-dimensional representations of the soundscape
 -) for a defined depth, time period, and frequency range
-) Assess individual source (type) contributions
-) Execute scenario studies

JOMOPANS NORTH SEA SOUNDSCAPE MAPPING

) North Sea area

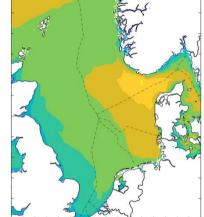
-) SPL_{1s} temporal percentiles
-) Depth average
-) 10 Hz 20 kHz
-) Shipping and wind noise



MODEL INPUTS

AIS/VMS - May 2019

Raw AIS data cleaned and trajectory interpolated to 10 min resolution


'Median grain size of North Sea surface sediments'

EModNet (1/8'×1/8')

Bathymetry

Mean Wind Speed - May 2019

Copernicus Marine Environment Monitoring Service

NEW SHIP SOURCE LEVEL MODEL

190

180

170

160

150

170

150

130

0

ECHO - J-E ···· RANDI · -· WH02

190

180

170

160

150

180

170

160

150

10,00

Containership (n=440)

Tug (n=173)

Frequency Band (Hz)

A Reference Spectrum Model for Estimating Source Levels of Marine Shipping Based on Automated Identification System Data

Alexander MacGillivray ^{1,*} and Christ de Jong ²

- JASCO Applied Sciences, Victoria, BC V8Z 7X8, Canada
- Netherlands Organisation for Applied Scientific Research (TNO), 2597 AK The Hague. The Netherlands: christ deione@tno.nl
- Correspondence: alex.macgillivray@jasco.com; Tel.: +1-250-483-3300

) Source level depends on

- Ship type
- Ship length
- Ship speed
-) Parameters from AIS

Collaboration with ECHO programme

10,000

Cruise (n=54)

Vehicle Carrier (n=141)

MDPI

JOMOPANS Soundscape modelling

Bulker (n=850)

Tanker (n=129)

180

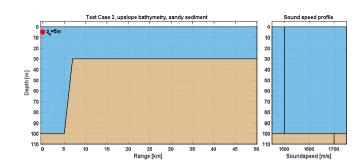
(ш 170 н 160 150

<u>_</u> ይ (dB

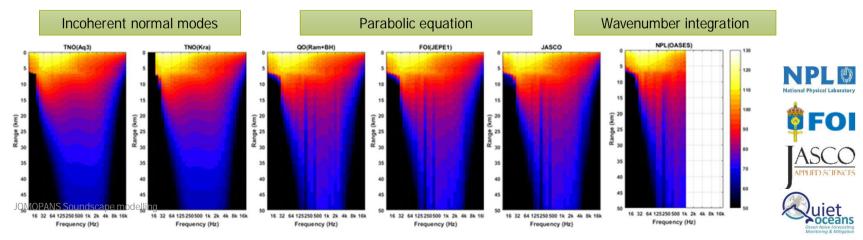
SL 180

Mean 160

150


140

0


PROPAGATION MODEL BENCHMARKS

Two well-defined scenarios

) broadband SPL differences < ~2 dB (beyond 1 km)
) one-third octave band SPL differences < ~5 dB (>~32 Hz and beyond 500 m)

See UACE 2019 paper Binnerts et al

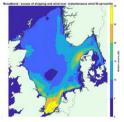
MODEL IMPLEMENTATION (TNO)

) Assumptions:

- Ignore sound speed profile
- Ignore surface waves (for ship noise)
- Precompute propagation loss between source and receiver grids

) Guidelines for soundscape modelling

	Computation time	Datasize
Calculate propagation loss	7 days	Prop loss
	-	database 768 GB
Calculate snapshots of SPL levels for	12 * 9 days	wind 2250 GB
12 months		ships 4800 GB
Reshuffle snapshots into areas	7 days	4800 GB
Calculate month statistics	12 days	50 GB
Calculate year statistics	12 days	6 GB
Total	146 days	13 TB

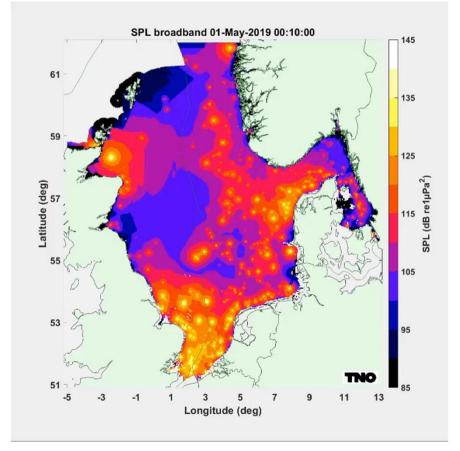


Joint Monitoring Programme for Ambient Noise North Sea 2018 – 2021

Guidelines for modelling

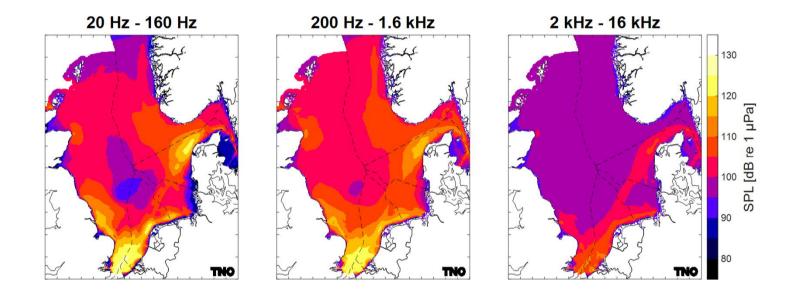
ocean ambient noise

Deliverable/Task: WP 3&4



Authors: Christ de Jong, Bas Binnerts, Stephen Robinson, Lian Wang Affiliations: TNO (NL) and NPL (UK)

Date: June 2021



MAPS OF SHIPPING AND WIND NOISE IN MAY 2019

SOUNDSCAPE MAPS: SHIPPING + WIND (ANNUAL MEDIAN)

1248 maps: including different versions of excess level and dominance, and SPL contributions of individual ship types and wind, for 6 frequency bands and for the 12 months of 2019

CONCLUSION

-) JOMOPANS sound maps provide an unprecedented insight in the relevance of shipping for the North Sea sound scape
- > Still many remaining issues to be solved to be able to quantify and possibly reduce uncertainties in the modelled soundscape maps.
-) Main issues to be addressed:
 -) incompleteness (missing sources) and uncertainty in the input data
 -) limited spatial coverage of measurement sites

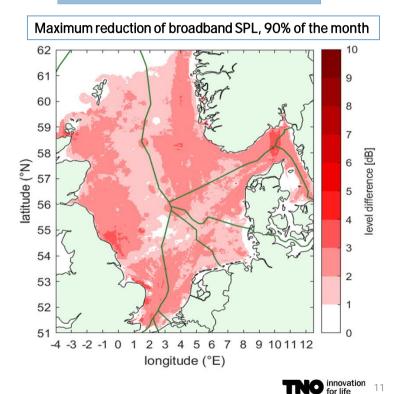
Sound particle motion mapping:

https://www.marei.ie/project/saturn-solutions-at-underwater-radiated-noise/

STUDY: NOISE REDUCTION BY "SLOW STEAMING"

HEALTH, FOOD CHAIN SAFETY AND ENVIRONMENT

Online Seminar 30-03-2021


noise from shipping Solutions for underwater noise from shipping.

https://www.health.belgium.be/en/news/solutions-underwater-noise-shipping

Limit speed to maximum 75% of design speed

JOMOPANS sound maps

THANK YOU FOR YOUR ATTENTION

ME

North Sea Region Jomopans

European Regional Development Fund

EUROPEAN UNION

christ.dejong@tno.nl