

EUROPEAN UNION

JOMOPANS End Event

JOINT MONITORING PROGRAMME FOR AMBIENT NOISE IN THE NORTH SEA

WP6 Combination Rosalyn Putland, Adrian Farcas & Nathan Merchant Noise and Bioacoustics Team, Cefas 2021-06-10

Concept for WP6

- Compare distribution of measured and modelled noise
- Identify sources of error/ uncertainty
- Optimise modelling and measurements
- Produce confidence maps of final outputs

Measurement

Centre for Environment Fisheries & Aquaculture Science

Ambient noise levels

Combination

Iteration 1 and Iteration 2 predictions compared to field measurements at 8 JOMOPANS stations

Centre for Environment Fisheries & Aquaculture

Combination

Compared final model <u>for nearest grid positions</u> to 2019 field **meas**urements for 15 JOMOPANS stations

- Spectral
 - o 1/3 octave frequencies,
 - o D1 20-160 Hz
 - o D2 200-1600 Hz
 - o D3 2000 16000 Hz
 - o BB 20-20000 Hz.
 - o Used P50 for wider comparisons.
- Spatial and temporal

Measurements

Measurements

Station characteristics and possible sources of uncertainty

- Seasonal thermoclines
- Deep versus shallow sites
- Uncertainty in sediment type
- Flow noise
- Recreational fishing pressure
- Offshore wind farms
- Machinery/generator noise
- Seismic surveys

Comparison

1-SE-VIN 2-DK-ANH

3-DK-HRP

4-DE-FN3

S-DE-ES

S-DE-FN1

7-NL-TEX

8-BE-WST

S-UK-DOW

10-SC-ARB

11-8C-HE

14-NO-NTR

16-DK-TN

17.0K.TM

-

2019 median difference heatmap produced for all third octaves, decadal and broadband frequencies

Blue = model lower than measurements Red = model higher than measurements

Centre for Environment Fisheries & Aquaculture Science

WP6 Summary and Recommendations

- Greatest uncertainty at low frequencies < 2kHz
- Model closely agreed > 2 kHz (< 6 dB difference)
- Validation highlights difficulty in predicting shipping noise
 - Additional noise sources and environmental factors
 - Trade-off between model accuracy vs. model complexity

- Further data treatment could separate intermittent and continuous sounds
- Consider sub regions of North Sea ('acoustic basins')
- Measurements essential to ground truth predictions and monitor trends

Station characteristics and possible sources of uncertainty

	Continuous sound sources				Impulsive sound sources				Other sources			
Station	Shipping	No AIS	CTVs	Operational	Seismic	Construction	Sonar	Explosions	Flow	Mooring	Platform	Biological
	lane	ships		noise	surveys	work			noise	noise	noise	sound
01-SE-VIN	Х	Х							Х			
02-DK-ANH		Х	Х	Х	Х		Х		Х	Х		Х
03-DK-HRF	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
04-DE-FN3			Х								Х	
05-DE-ES1					Х					Х		
06-DE-FN1	Х		Х	Х		Х	Х		Х		Х	
07-NL-TEX	Х								Х	Х		
08-BE-WST	Х	Х	Х			Х		Х	Х			Х
09-UK-DOW	Х								Х			
10-SC-ARB		Х			Х				Х	Х		Х
11-SC-HEL		Х			Х	Х		Х		Х		Х
14-NO-NTR												
16-DK-TN1	Х	Х	Х	Х	Х		Х		Х	Х		Х
17-DK-TN4	Х	Х	Х	Х	Х		Х		Х	Х		Х
18-DK-EDA		Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х

Centre for Environment Fisheries & Aquaculture Science

