
The potential of hydrochar for soil improvement 

and carbon sequestration

Megan J. de Jager

Doctoral Dissertation Defense – 30 April 2021

AG Bodenkunde

Institut für Biologie und Umweltwissenschaften

Fakultät V - Mathematik und Naturwissenschaften

Carl von Ossietzky Universität, Oldenburg



1

Chapter 1: Introduction

Chapter 2: The influence of hydrochar from biogas digestate on soil 

improvement and plant growth aspects

Chapter 3: An investigation of the effects of hydrochar application 

rate on soil amelioration and plant growth in three diverse soils

Chapter 4: The stability of carbon from a maize-derived hydrochar as 

a function of fractionation and hydrothermal carbonization 

temperature in a Podzol

Chapter 5: Conclusions and future perspectives

Outline



2

Chapter 1: Introduction

Chapter 2: The influence of hydrochar from biogas digestate on soil 

improvement and plant growth aspects

Chapter 3: An investigation of the effects of hydrochar application 

rate on soil amelioration and plant growth in three diverse soils

Chapter 4: The stability of carbon from a maize-derived hydrochar as 

a function of fractionation and hydrothermal carbonization 

temperature in a Podzol

Chapter 5: Conclusions and future perspectives

Outline



Chapter 1: 

Introduction

3

Chapter 1



4

Exponential world population growth results in:1,10

a

Intensive agriculture, excessive fertilizer use 

Enhanced energy production
b

Land use change
c

Deforestation, poor agricultural practices
d

Introducing the problems
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Introducing the problems
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By-products:

biomass wastes2,3

e

Crop residues

Manure

Biogas digestate

a

b

g

h

i

Introducing the problems

6

Chapter 1



Solving the problems

e

Thermochemical conversion: 

Pyrolysis4,5

Biocharkg

h i

j

Crop residues

Manure Digestate

7

Chapter 1



Solving the problems

Biochar - Pyrolysis

• High C sequestration potential7,8,9

• 50% original C content, recalcitrant3,6

• Soil amendment tool

• Nutrient content from feedstock10,11,33

• pH (liming effect) 6,11

• Physico-chemical structure6,11,20,22,23
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VSBiochar - Pyrolysis

• High C sequestration potential7,8,9
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• pH (liming effect) 6,11

• Physico-chemical structure6,11,20,22,23

Hydrochar - Hydrothermal 

Carbonisation

• Thermochemical conversion13

• Closed, water-saturated system

• 180 – 260˚C, ca. 20 bar

• Variable reaction times (mins – days)

• 60-84% original C content15

• Different physico-chemical structure16
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• Most research focused on BC  

• HC is also suitable for:

 Soil amelioration 

 C sequestration

 Reduced GHG emissions

 Enhanced plant growth

 Promotes biological activity

• Conflicting results16,36,47,60

• Results vary depending on:17,18,19,32,34

Feedstock, process conditions, HC characteristics, soil properties, environmental 

conditions, plant species and application rate.

Hydrochar by HTC

HC

BC

Solving the problems
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Hydrochar by HTC
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Solving the problems

• Most research focused on BC  

• HC is also suitable for:

 Soil amelioration 

 C sequestration

 Reduced GHG emissions

 Enhanced plant growth

 Promotes biological activity

HC

BC

• Conflicting results16,36,47,60

• Results vary depending on:17,18,19,32,34

Feedstock, process conditions, HC characteristics, soil properties, environmental 

conditions, plant species and application rate. 13
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Research Objectives

1. Analyse the influence of the grain size of hydrochar on soil improvement and

germination- and biomass success in three diverse soils Chapter 2
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1. Analyse the influence of the grain size of hydrochar on soil improvement and

germination- and biomass success in three diverse soils Chapter 2

2. Identify the effects of different application rates of hydrochar on nutrient

availability and physico-chemical properties of three soils, as well as

germination success and biomass production Chapter 3
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1. Analyse the influence of the grain size of hydrochar on soil improvement and

germination- and biomass success in three diverse soils Chapter 2

2. Identify the effects of different application rates of hydrochar on nutrient

availability and physico-chemical properties of three soils, as well as

germination success and biomass production Chapter 3

3. To investigate the influence of HTC production temperature on the relative

degradability and subsequent fate of HC-C within the free-, occluded within

aggregates- and organo-mineral SOM fractions Chapter 4
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Research Objectives



Chapter 3: 

An investigation of the effects of hydrochar 

application rate on soil amelioration and plant growth 

in three diverse soils
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The influence of HC application rate



Background

No generally accepted consensus

Conflicting results on application rate

19
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de 
Jager et 
al. 2020

Bargmann 
et al. 2013

Reza et 
al. 2014

de 
Jager et 
al. 2020

Bargmann 
et al. 2013

Reza et 
al. 2014

5% HC: 

shifted pH, 

improved nutrient 

supply

2% & 4% HC:  

no effect on 

germination 

1% HC: 

no effect on 

soil

5% HC: 

no effect on 

WHC, CEC, 

plant growth

10% HC: 

reduced 

germination

1% HC: 

reduced crop 

yield

(41)

(36)

(35)
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Research hypotheses:

Higher HC application rates will result in:

1) Greater pH changes

2) Increased nutrient content (PO4-P and K) and microbial activity

3) Germination inhibition and reduced plant growth



Hydrochar:

• Digestate feedstock (crop residues and beef and swine manure)

• ~ 200 ˚C, 18-20 bar,

• ~ 3 hr residence time,

• ~ 1.5 hr heating and cooling rate

Soils:

• Three soil types (dissimilar properties and agricultural value)

• Pot experiments

• Homogenously mixed with hydrochar

• Controls (no hydrochar)

Materials 

Soil type
Sand Silt Clay Texture

(FAO, 2006)(%)

Chernozem 16 43 41 Silty clay

Podzol 66 21 13 Sandy loam

Gleysol 1 6 93 Clay
21
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t0

Controls 
(pure soil)

t1

Shortly after 
HC addition

t2

End of 
experiment

Beginning of experiment

Methodology
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Hydrochar application rates:

• 5, 10, 20 and 30 % (w/w)

• C,H,N,S,O and ash content

Methodology:

• Standard pedological methods

• Euro Elemental Analyzer

• Kruskal-Wallis H Test and Mann-

Whitney U test (SPSS, ver. 26)

Soil properties: 

• pH (H2O)

• plant available nutrients (phosphate 

(PO4-P) and potassium (K))

• microbial respiration rate

• seed germination and biomass success

Methodology

23



Results and discussion:

pH

Hydrochar pH (6.6)Significant differences between means (p ≤ 0.05) are indicated by different letters. Not Significant (n.s) Significant

The addition of the acidic hydrochar (6.6) 

shifted the soil pH to the pH of the hydrochar

Greatest change at higher application rates

Liming effect due to:25

• High ash content24

• Contribution of major cations and exchange

processes25,26

• pH response is dependent on initial soil and 

HC pH27

Stabilization of pH over time

Repeated application for sustainable effect

24



Hydrochar PO4-P = 6544,3 mg kg-1

• Inherently high P content of feedstock28

• Less resistant to decomposition6,30,42

• Liberation of P from Fe-, Al- and Ca

phosphates18,29,38

• pH-dependent change

• Plant uptake and microbial biomass

incorporation32 reached maximum

• Excess may be harmful to plant growth43

Significant differences between means (p ≤ 0.05) are indicated by different letters. Not significant (n.s) Significant difference

Results and discussion:

Phosphate (PO4-P)

Direct contribution of PO4-P

Increased with increasing application rate

Increased from t1 – t2
= contradicts previous findings

Repeated smaller applications recommended

25
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+ 144 %

+ 377 %

+ >2000 %



Hydrochar K = 2384 mg kg-1

Significant differences between means (p ≤ 0.05) are indicated by different letters. Not significant (n.s) Significant difference

Results and discussion:

Potassium (K)

Direct contribution of K

Increased with increasing application rate

Greater increase in low K content soils

• Relatively easily degradable HC fraction30,31

• Plant and microbial uptake/ leaching

• Risk of enhanced leaching, especially in 

sandy soils27

Sustainable supply of K at higher 

application rates

27
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Results and discussion:

Microbial Respiration

• Initial stimulus due to:

• Labile C fraction of HC44,45

• Response to pH change46

• Reduced respiration rate at t2:

• Limited C source47,48

• Competition from plants

• Mediated respiration rate 

• Improved biological soil status

Significant differences between means (p ≤ 0.05) are indicated by different letters. Not significant (n.s) Significant difference

Initial stimulus

Higher activity at higher application rates

Decreased activity over time

28
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Soil
Chernozem Podzol Gleysol

Avg. %

Control 87 54 91

5 % 79 80 89

10 % 84 77 87

20 % 76 89 94

30 % 92 81 93

Average percent germinated seeds for the controls and

HC-amended soils over two rounds of the germination

experiment.

Fresh HC can contain organic 

contaminants36,37,39 – not evident here

Adverse HC impacts reduced by: 

• HTC process conditions (temp. & 

reaction time)35

• Free gas exchange at soil-atmosphere 

interface36

• Microbial decomposition of phytotoxic 

compounds37

• Age and storage time of HC36

Results and discussion:
Seed germination and biomass success

Higher application rates did not reduce 

biomass production

29
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No seed germination inhibition

Significant differences between means (p ≤ 0.05) are indicated by different letters. Not significant (n.s)



Conclusions
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Hypotheses:

Higher HC application rates will result in:

1) Greater pH changes 

• Shifted the pH of the soil toward the pH of the hydrochar – stabilized over time

• Most pronounced at higher application rates

2) Increased nutrient content (PO4-P and K) and microbial activity

• PO4-P content increased with increasing application rates – surplus remains

• K content increased with application rate – sustained at higher rates

• Microbial activity initially increased – stimulus limited to labile C availability

3) Germination inhibition and reduced plant growth

• No seed germination inhibition at any application rate

• Supported plant growth, especially at higher application rates

HC from biogas digestate is suitable for soil amelioration, preferably in 

smaller regular applications



Chapter 4: 

The stability of carbon from a maize-derived 

hydrochar as a function of fractionation and 

hydrothermal carbonization temperature in a Podzol

31
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Background

HC less effective tool for C sequestration

• Higher H:C and O:C ratios49,50

• Labile C fraction15,51

Dependent on HTC conditions and feedstock19

Means to improve HC effectiveness

• Higher HTC production temperatures13

• Condensed C structure        recalcitrant8,52

• Interactions and association with primary soil 

organic matter (SOM)

• Protection against degradation53,54

• Increased stability

Free Particulate 
Organic Matter

Occluded Particulate 
Organic Matter

Clay- bound

Increasing stability

32
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Limited knowledge available about 

HC – SOM interactions



Methodology

Hydrochar:

• Maize silage feedstock 

• 190, 210 and 230 ˚C

• 5 % application rate 

• C,H,N,S,O and ash content

Soils:

• Podzol (sandy loam)

• Pot experiments for ~ 1 year

• Homogenously mixed with hydrochars

• Control (no HC)

Methodology:

• Density fractionation procedure55

• Flash 2000 Elemental CN Analyzer

coupled via a ConFlo III Interface to

a Delta V Advantage IRMS56

• Euro Elemental Analyzer

• Kruskal-Wallis H Test (SPSS, ver.

26)

33
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Methodology

Measured parameters: 

• Weight proportions of:

• Initial free particulate organic matter (iPOMF)  – at the beginning 

• Free particulate organic matter (POMF)

• Occluded particulate organic matter (POMO)      after ~ 1 year

• Organic matter bound to clays (OMCl)

• C and N – accumulated OC, TOC

• δ 13C (‰) – % HC-derived C in SOM fractions57,58

• Distinct δ 13C signatures of different plants tissues62

• Share of HC-C and native SOC per fraction

Chapter 4

(ca.) – 28 ‰

Podzol:

C3 plant 

cultivation

Hydrochars:

C4 plant 

feedstock

l

(ca.) – 13 ‰

l m

34
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Research questions

1) How much HC-C is lost (decomposed) from the free-POM fraction of the soil after

approx. 1 year (i.e. how stable is the HC-C in its initial free-POM form)?

2) Is the level of HC-C decomposition from the free-POM fraction controlled by the HTC

production temperature?

3) Do the remaining products of HC decomposition become incorporated within the

relatively stable SOM structures of the occluded-POM fraction and organic matter

bound to clay particles?

4) Are the interactions and associations of the HC decomposition products with the

relatively stable SOM fractions (POMO and OMCl) controlled by the HTC production

temperature?



Results and discussion:

HC properties

• Increased C and decreased O with HTC temperature59

• Increased degradability of HC = high H/C (≥ 0.6) and O/C (≥ 0.4) ratio19,40,60

Increasing 

stability

36
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Results and discussion:

C stocks of SOM fractions

Bulk soil TOC*

After HC 

addition

After 1 

year

% loss
(g kg-1)

Control 18.1 21.2

HC190 47.1 36.7 22

HC210 48.5 38.5 21

HC230 53.4 40.9 23

*Bulk soil TOC was determined as the sum of accumulated OC of all SOM fractions 

(including silt and sand).

The total organic carbon (TOC) content of the bulk soil (including sand and silt fractions (data not shown)) in g

kg-1 at the beginning of the study (shortly after HC addition) and after 1 year of soil incubation, and the

percentage (%) lost over the 1 year period.
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Bulk soil TOC*

After HC 

addition

After 1 

year

% loss
(g kg-1)

Control 18.1 21.2

HC190 47.1 36.7 22

HC210 48.5 38.5 21

HC230 53.4 40.9 23

*Bulk soil TOC was determined as the sum of accumulated OC of all SOM fractions 

(including silt and sand).

Results and discussion:

C stocks of SOM fractions

Source: Lehmann 201968
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Results and discussion:

HC-derived C in SOM fractions

m

The average percent of total organic carbon (TOC) derived from the hydrochars (HC-C) and native soil organic 

carbon (SOC) at the beginning of the study (as iPOMF), and after approx. 1 year (as POMF, POMO and OMCl)



Results and discussion:

HC-derived C in SOM fractions

m

The average percent of total organic carbon (TOC) derived from the hydrochars (HC-C) and native soil organic 

carbon (SOC) at the beginning of the study (as iPOMF), and after approx. 1 year (as POMF, POMO and OMCl)



Results and discussion:

HC-derived C in SOM fractions

m
68 – 81 % HC-C lost from POMF
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Results and discussion:

HC-derived C in SOM fractions

m
51 – 72 % SOC lost from POMF
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Results and discussion:

HC-derived C in SOM fractions

m
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Positive Priming Effect
30,47,54



Results and discussion:

HC-derived C in SOM fractions

m

HC190 HC210 HC230

H/C ≥ 0.6: higher degradability19,60
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68

Positive Priming Effect
30,47,54



Results and discussion:

HC-derived C in SOM fractions

m

HC-C and SOC increased in POMO fraction 45
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Results and discussion:

HC-derived C in SOM fractions

Factors influencing the stability and decay of biochar, and their importance over time

46

Chapter 4Source: Lehmann et al. 200963



Results and discussion:

HC-derived C in SOM fractions

m

OMCl fraction – slow reactivity8,64,65 47
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Answering the research questions

1) How much HC-C is lost from the POMF fraction after approx. 1 year?

- 68 – 81 % HC-C and 51 – 72% native SOC was lost from the POMF fraction

- Positive priming effect was temporary

2) Is the level of HC-C decomposition from the POMF fraction controlled by the HTC 

production temperature? 

- No significant differences in losses between different temperature HCs

3) Does HC-C incorporate within the relatively stable POMO and OMCl fractions?

- Yes, HC-C present in POMO and OMCl fractions  after 1 year

4) Are these interactions controlled by the HTC production temperature? 

- Influenced HCs physico-chemical and structural properties 

- No significant differences in HC-C content of POMO and OMCl fractions



Conclusion

Despite large C contribution 

from the maize-derived HCs, 

its effectiveness is reduced 

by positive priming effect. 

Therefore, more research is 

required on reducing initial 

priming losses and promoting 

long-term stabilization in 

stable SOM fractions 

49
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Gains 
POMO

Losses 
POMF



Chapter 5: 

Major Conclusions and Future Perspectives
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Major Conclusions

51

Chapter 5

• Hydrochar from biogas digestate – effective soil amendment

• Repeated addition of finer grained HC at 5 - 10 % application 

rates

• Hydrochar from maize silage – low suitability for C stabilization 

over short-term

• Longer-term research required to verify C sequestration 

potential



Future perspectives
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Chapter 5

• Field studies using recommended grain size and application rate 

• Influence of recommended HC parameters on other soil properties, 

e.g. Nmin, Ca, Mg, Al and Fe

• Long-term research (> 2 years) required 

on C balance in SOM fractions

• More soil types and textures – beneficial 

HC interactions



Thank you for your attention!
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Questions?
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