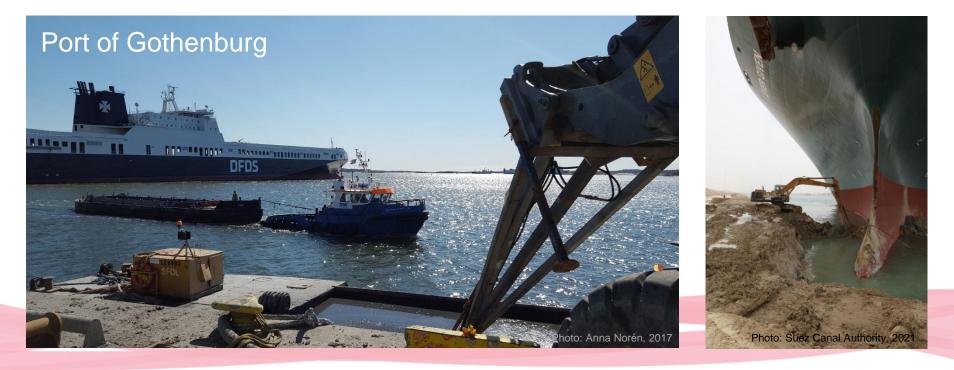

Round 2: Session 6 – Sediment Quality

Chalmers University of Technology

Anna Norén

European Regional Development Fund EUROPEAN UNION


Göransson et al, 2013

Göta älv

Dredging needed...

Main problems: TBT, Cu and Zn marine silt & clay

Shutterstock

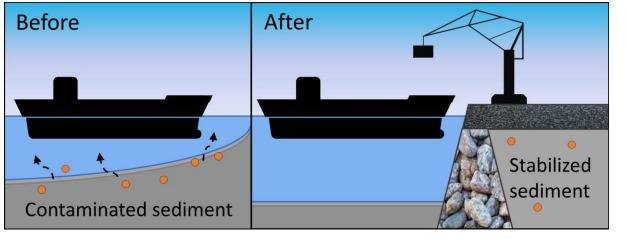
Norén, 2013

Shutterstock

How can we manage contaminated sediment? How can we treat contaminated sediment? Can we use treated sediment?

Conventional sediment management

Disposal out at sea Landfilling


Most preferable Prevention Sediment management **Minimization** • Disposal in landfills Reuse • Disposal at sea Stabilization and solidification Recycling Least preferable Energy recovery Disposal

7

Stabilization and solidification (S/S)

Sediment

- Binders
 - Cement
 - Ground granulated blast furnace slag (GGBS)
 - Fly ash

Norén, 2021

Figure: Göteborgs hamn, 2016

How should we manage contaminated sediment?

How should we manage contaminated sediment?

An integrated assessment method was developed, using life cycle assessment (LCA) and multicriteria analysis (MCA)

- Costs
- Metal quantity and value
- Climate impact (CO₂)
- Other environmental impacts short- and long-term

Step 1. Sediment characterization Environmental guidelines Environmental legislation Pollutant concentrations Output: Sediment guality

Step 2. Management strategies Volume and weight of dredged sediment Mass management guidelines Mass management legislation Pollutant concentrations

Output: Selection of management alternatives

Step 3. Management costs Mass classification and management options Volume and weight of dredged sediment Mass management costs Output: Estimated management costs

> Step 4. Net revenue Management costs Metal content Metal prices Output: Potential net revenue

Step 5. Assessment Short- and long-term perspectives Environmental impacts Output: Pros and cons

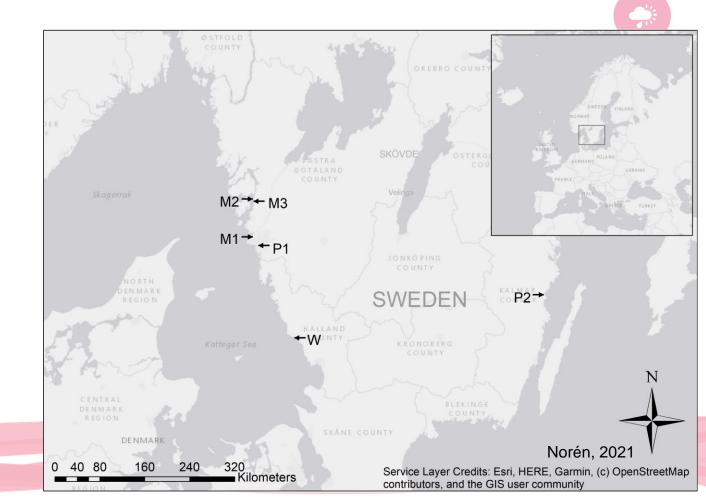
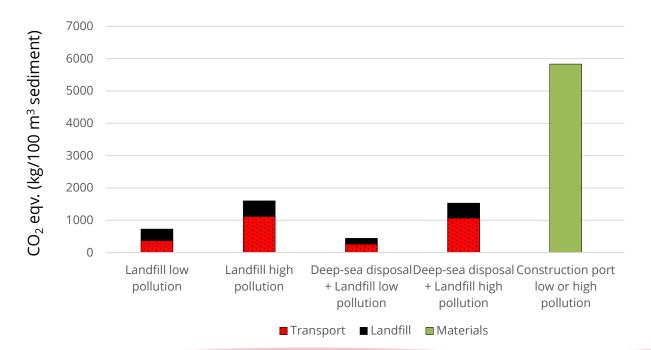
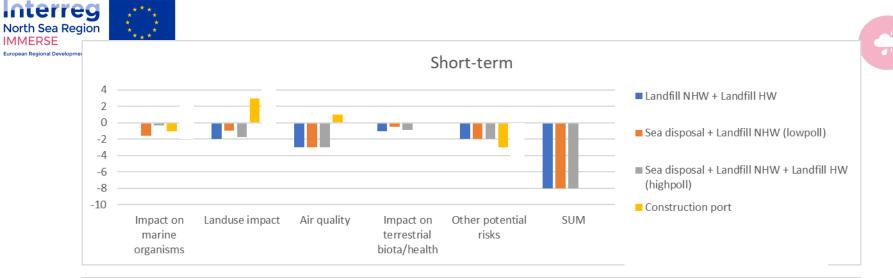
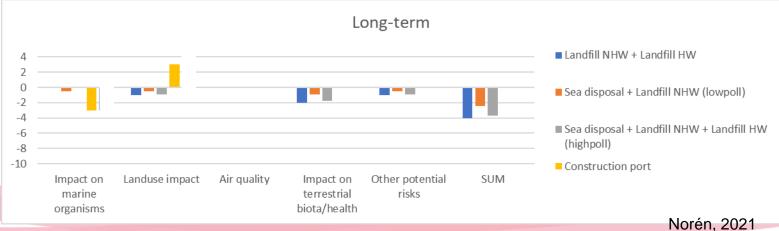

Step 6. Comparative analysis Outputs from previous steps Output: Comparative assessment of management alternatives

Image from Norén, 2020

Studied sites


- 3 Marinas (M)
- 2 Ports (P)
- 1 Waterway (W)



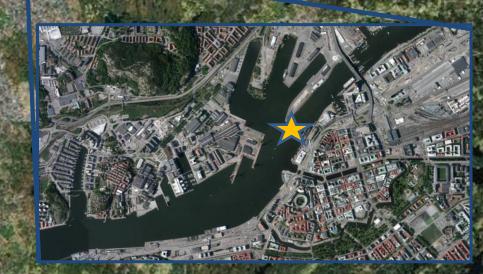


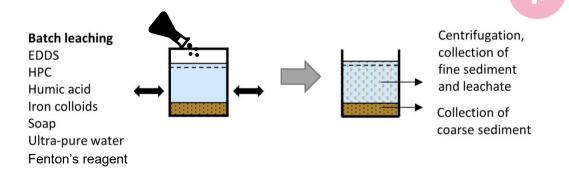
Climate impact

Norén, 2021

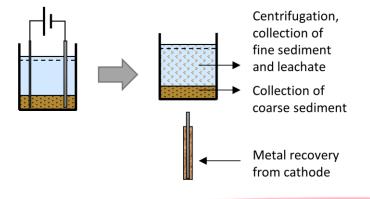
Metal recovery

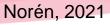
- Break-even treatment cost ~120-390 USD/tonne
- Metal recovery might be more attractive in the future


How can we treat contaminated sediment?


Maps: Eniro/ Lantmäteriet, Göteborg

Leaching

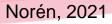

- Low environmental impact leaching agents
- Tougher leaching agents



Oxidation

- Electrochemical treatment
- Fenton's reagent ($Fe^{2+} + H_2O_2$)

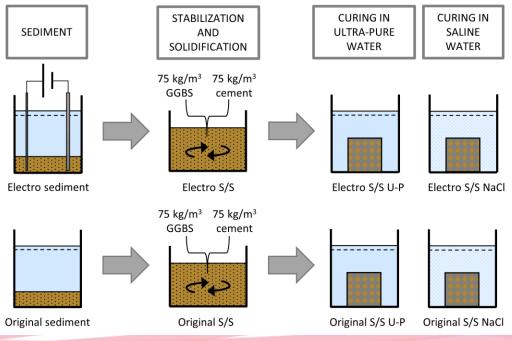
Electrochemical degradation



Results

	Electrochemical oxidation	Fenton reagent oxidation	Ultra-pure water
Removal [%]			
TBT	58	64	46
Cu	13	45	15
Zn	13	40	12
+	Relatively unchanged sediment residue, which enables potential use in construction.	The highest reduction of TBT and high reduction of metals.	Unchanged sediment residue, which enables potential use in construction. Low working environment risks.
-	High environmental impact by the production of electrodes. Working environment risks (gas production during electrolysis). Management of leachate.	Low pH, changed sediment residue (smaller particles). Working environment risks (handling of chemicals, gas production during treatment). Management of leachate.	Expensive equipment for the production of the leaching agent. Management of leachate.

How can we use treated sediment?



Stabilization and solidification

Compression strength

Leaching

TBT reduction after S/S

	Electrochemical oxidation	Fenton reagent oxidation	Stabilization and solidification	Ultra-pure water	
Removal [%]					
TBT	58	64	46 ^a	46	
Cu	13	45	61 ^a	15	
Zn	13	40	-13 ^a	12	

^a Reduction with S/S alone from initial original content (dilution effect excluded).

Electrolysis pretreatment – effect on S/S

+ DECREASED THE LEACHING OF METALS

- DECREASED THE COMPRESSION STRENGTH (STILL PASSED THE SET REQUIREMENTS)

Curing in saline water – effect on S/S

- INCREASE THE LEACHING OF METALS + DECREASE THE LEACHING OF TBT

+ INCREASE THE COMPRESSION STRENGTH

How can we manage contaminated sediment?

Integrated assessment with MCA and LCA \rightarrow Include social aspects How can we treat contaminated sediment?

Both leaching and degradation could be effective (e.g., ultra-pure water, electrolysis)

- \rightarrow Toxicity + sequential leaching tests
 - \rightarrow Technique development
 - \rightarrow Scale up treatment

Can we use treated sediment?

Stabilization and solidification \rightarrow Other uses?

Published work behind this presentation within the IMMERSE project

- <u>https://doi.org/10.1016/j.scitotenv.2019.135510</u>
- <u>https://doi.org/10.1016/j.jenvman.2020.111906</u>
- <u>https://doi.org/10.1007/s11356-021-17554-8</u>
- <u>https://doi.org/10.1016/j.wasman.2021.11.031</u>
- <u>https://research.chalmers.se/publication/525021/file/525021_Fulltext.pdf</u>