GRONINGEN AIRPORT EELDE

H2 SOLUTIONS IN AIRPORT GROUND

POWER EQUIPMENT

THE SALES

Muruvvet Deniz Sezer, Annelies Nühn, Aylin Apaydın, Jasper Platte, Koen Mossink

with contributions from

Kristian Peters, Arpan Rijal, Jonas van Dorp, Evrim Ursavas

AGENDA

- 1. Managerial Summary
- 2. Stakeholder Collaboration in an Airport Hydrogen Ecosystem: Investigation of Barriers and Design Advice- Case study at Groningen Airport Eelde
- 3. Replacing diesel-powered GPUs with hydrogen-powered GPUs A study investigating the environmental impact of those GPUs and their supply chains
- 4. Economic Effects of Sustainable Energy Supply at Regional Airports: The Transformation Towards Hydrogen Ground Power Units (h-GPUs) at Groningen Airport Eelde

1. MANAGERIAL SUMMARY

- Sustainable and zero-emission practices
- The ground power unit (GPU) is one of the ground support equipment that can be considered as a significant source of carbon emissions in airports since they are responsible for about 10% of the total emissions (Dube & Nhamo, 2019; Balli & Calliskan, 2022).
- Hydrogen transition
- Alongside analyzing the environmental impacts of this transition, it is important to evaluate its economic impact since hydrogen technology deployment in GPUs necessitates establishing a robust infrastructure, substantial investments, and operating costs.

GRONINGEN AIRPORT EELDE

- Benefits and barriers of h-GPUs
- This project aims to explore the feasibility and the grounds for the implementation of hydrogen solutions for GPUs

Interreg

North Sea Region

European Regional Development Fund EUROPEAN UNION

THE SPECIFIC TASKS AND OBJECTIVES OF THE PROJECT

Conducting a LCA to analyze CO_2 gains of h-GPUs.

Development of a cost-benefits model to evaluate the economic impact of the transition to h-GPUs.

Analysis of operational, economic, legal and regulatory, technical, safety barriers for the transformation.

Determining the learning points in the transformation to h-GPUs for regional airports here and beyond to facilitate replicability in other regions.

Proposing recommendations to support policy, stakeholders enhancing knowledge, and facilitating further research.

Stakeholder Collaboration in an Airport Hydrogen Ecosystem: Investigation of Barriers and Design Advice

Case study at Groningen Airport Eelde

	CO	NTENT
	æ	Objective
	<u> </u>	Methodology
	Q	Findings
	Fil	Discussion
	*	Conclusion
GRONINGE	N AIRPORT EE	LDE Interreg North Sea Region European Regional Development Fund EUROPEAN UNION

Objective

- What are stakeholder cooperation possibilities for an airport hydrogen ecosystem?
- □ What are the barriers and design recommendations?

Summary

- Investigation of stakeholder roles, expectation and barriers
- Design advice of managers and policy makers

Methodology

Case study at Groningen Airport Eelde
 16 interviews

- □ 22 stakeholder categories
 - □ Technology providers, politics, industry, society etc.
 - □ Validity and triangulation: various categories

Findings

- □ Hydrogen economy
 - Promising but uncertain
 - □ Applications?
 - □ Batteries or electricity not possible
- Business model
 - □ Economies of scale
 - □ Refueling station
 - □ Transport and heating
- Collaboration
 - □ Entire supply chain realisation
 - □ Subsidies on supply chain level
- Decentralized or centralized system
 - Grid regulations

Findings

- □ Economic barriers
 - □ High investment and operational costs
 - □ Feasible business model
- Technical barriers
 - □ Lack of infrastructure, skills and applications
 - □ Not enough people and manufacturers
- Political barriers
 - □ Lack of regulations and standards
 - □ Government knowledge —> Municipality level
 - □ Complicated procedures
- Social and environmental barriers
 - □ Lack of public knowledge
 - □ High acceptance hydrogen
 - □ Airport resistance
 - □ Financial, noice, pollution

Discussion

□ Economic

- □ Decreasing costs future
- □ By 2040, FCEVs feasible
- Technical
 - □ Strong dependence on economic barriers
- Political and regulatory
 - □ More government support needed
 - □ Foster market development and mitigate uncertainty
 - □ Municipality level
- Social and environmental
 - □ Social acceptance controversial
 - □ Sustainability helps to gain support
 - □ Communication, openness, transparency, participation

Conclusions and Advice

Hydrogen is promising, but there are significant challenges
 Various interdependent barriers

Dutil 2030

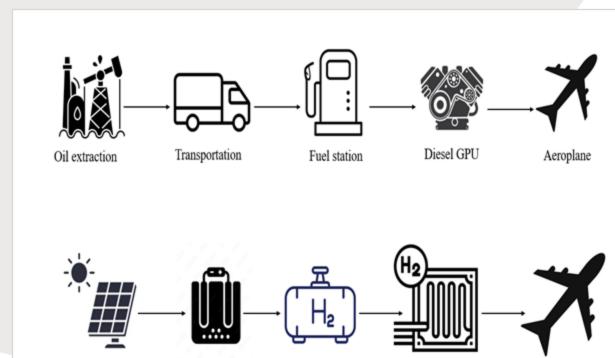
- □ Focus battery electric GSE
- □ Infrastructure development
- □ Subsidies and government support
- □ Clear regulations
- □ Communication and social acceptance

□ Until 2050

- □ More FCEVs
- □ Electricity and hydrogen flying
- □ Hydrogen grid pipelines
- □ Social acceptance

Replacing diesel-powered GPUs with hydrogen-powered GPUs

A study investigating the environmental impact of those GPUs and their supply chains



CONTENT					
Objective					
Methodology					
Q Findings					
Ta Discussion					

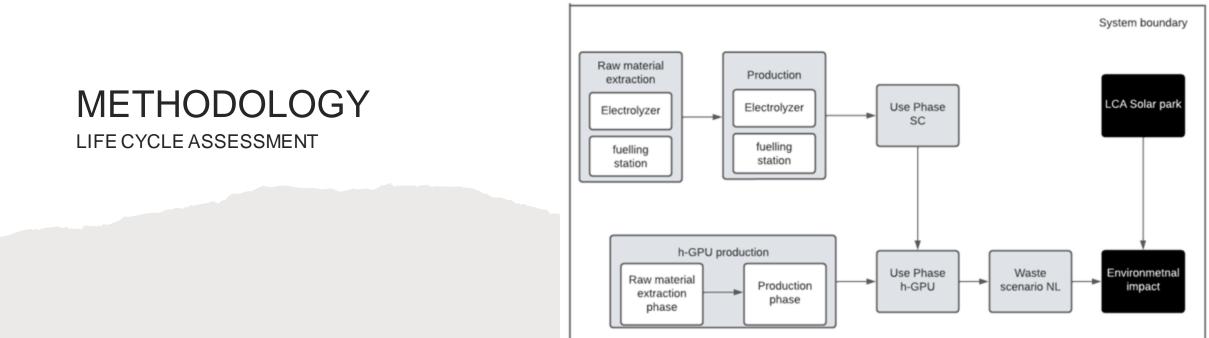
university of groningen

OBJECTIVE

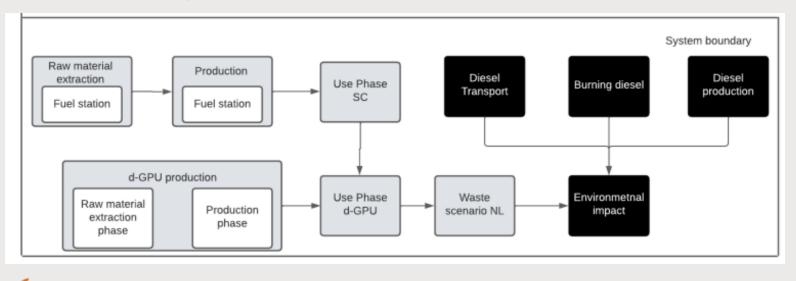
environmental impact of a hydrogen or diesel GPU and their supply chains?

What is the

Renewable energy



Storage tank


Electrolyser

hydrogen GPU

Aeroplane

LCA Diesel Supply Chain

LCA Hydrogen Supply Chain

METHODOLOGY SCENARIO DEVELOPMENT

Scenario's Hydrogen Supply Chain

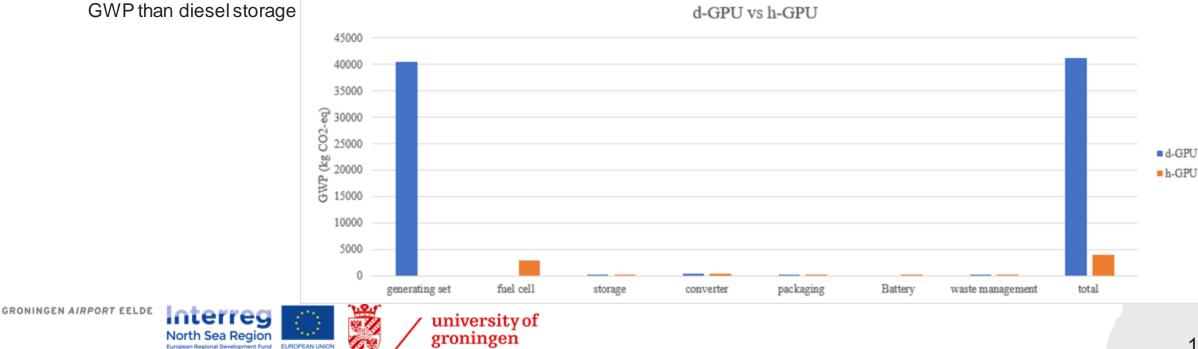
Scenario:	H2 per day	Capacity electrolyser	Electricity needed from the grid	Capacity solar panels	Percentage of the solar farm GAE	Capacity Storage
1 flight a day	15 kg	37.5 kW	864 kW	200 kW	1.1 %	31 kg
3 flights a day	45 kg	112,5 kW	2592 kW	599 kW	3.2 %	92 kg
5 flights a day	75 kg	187,5 kW	4321 kW	999 kW	5.4 %	153 kg
10 flights a day	150 kg	375 kW	8641 kW	1998 kW	10.7 %	305 kg
15 flights a day	225 kg	562.5 kW	12962 kW	2998 kW	16.1 %	457 kg

Diesel per Diesel per **Diesel per year Capacity Transport per** Scenario: day (MJ) year storage year 1 flight a 42 kg 15330 kg 654591 MJ 294 kg 2981,16 tkm day 3 flights a 126 kg 45990 kg 8963,76 tkm 1963773 MJ 882 kg day 5 flights a 210 kg 76650 kg 3272955 MJ 1470 kg 14905,8 tkm day 10 flights a 420 kg 153300 kg 6545910 MJ 2940 kg 14905,8 tkm day 15 flights a 630 kg 229950 kg 9818865 MJ 4410 kg 44717,4 tkm day

Scenario's Diesel Supply Chain

GRONINGEN AIRPORT EELDE

í


university of groningen

FINDINGS

GPUs COMPARISON

- One year d-GPU: 41,170 kg CO₂-eq
- Generating set contributes the most
- One year h-GPU: 3,900 kg CO₂-eq
- Fuel cell contributes the most
- Hydrogen storage higher

	d-GPU			h-GPU	
	Unit	GWP (x1000)		Unit	GWF (x100
generating set	kg CO2-eq	40.47	fuel cell	kg CO2-eq	2
diesel storage	kg CO ₂ -eq	0.06	storage	kg CO ₂ -eq	0
converter	kg CO ₂ -eq	0.40	converter	kg CO ₂ -eq	0
packaging	kg CO ₂ -eq	0.20	packaging	kg CO2-eq	0
waste management	kg CO ₂ -eq	0.04	battery	kg CO ₂ -eq	0
			waste management	kg CO ₂ -eq	0
total	kg CO ₂ -eq	41,17	total	kg CO ₂ -eq	3

FINDINGS

SUPPLY CHAIN COMPARISON

- d-SC: Transport highest GWP
- Production of diesel and burning of diesel also significantly contributing to the GWP
- h-SC: Solar park highest GWP (79% of the GWP of the entire supply chain)
- Electrolyser and fuelling station also significantly contributing to the GWP

Interreg

North Sea Region

d-	-GPU			h-GPU	
	Unit	GWP (x10.000)		Unit	GWP (x10.000)
diesel production	kg CO ₂ -eq	3.45	solar park	kg CO ₂ -eq	3.8
fueling station	kg CO ₂ -eq	0.004	electrolyser	kg CO ₂ -eq	0.2
d-GPU	kg CO ₂ -eq	0.16	fueling station	kg CO ₂ -eq	0.6
transport	kg CO2-eq	143.23	h-GPU	kg CO ₂ -eq	0.0
burning diesel	kg CO ₂ -eq	31.33	Water usage	kg CO ₂ -eq	0.0
waste management	kg CO ₂ -eq		waste management	kg CO ₂ -eq	0.0
total	kg CO ₂ -eq	182.43	total	kg CO ₂ -eq	4.9
50000 40000 30000 20000 10000					
o diesel production s	She part cleatrons	fueling station	GPU Hunshort dieself	whet numbernent	Lotal

DISCUSSION

- The GWP of the d-GPU is 10.4 times larger than the GWP of the h-GPU. The supply chain of the h-GPU is favoured over the supply chain of the h-GPU. Additionally, the more flight leaving the more favourable the h-SC becomes.
- Improvement points h-SC: electrolyser, solar park and storage facilities.
- Electrolyser: Large scale production

Interreg

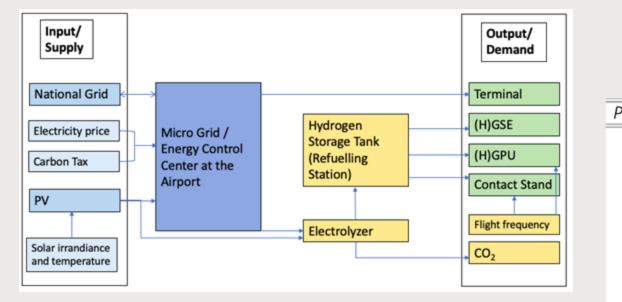
- Storage facilities: centralised storage. However, this lead to extra GWP due to transport
- Solar park: Reconsidering material choice. Literature proposes organic PV panels
 instead of multi-junction silicon panels
- Other ways to reduce the GWP per year: increasing lifetime and performance of the supply chain components
- Take a closer look at the recycling of the components. Keep the recycling in mind while designing products.

Economic Effects of Sustainable Energy Supply at Regional Airports:

The Transformation Towards Hydrogen Ground Power Units (HGPUs) at Groningen Airport Eelde

	CO	NTENT
	æ	Objective
	<u> </u>	Methodology
	Q	Findings
	Fil	Discussion
	*	Conclusion
GRONINGE	AIRPORT EE	LDE Interreg North Sea Region European Begional Development Fund

OBJECTIVE


What are the costs and benefits of transforming towards a h-GPU for airports?

•
$$TC_y = \sum_{y=0}^{N} \frac{CapEx_{y,i}}{(1+r)^y} + OpEx_{y,i} + COE_y$$

• $REV_y = R_y^{electricity} + R_y^{hydrogen}$

•
$$NPV = -\text{CapEx} + \sum_{y=0}^{N} \left(\frac{REV_y - OpEx_y}{(1+r)^y} \right)$$

METHODOLOGY

COST AND BENEFIT ANALYSIS + SIMULATION MODEL

Parameters	Descriptions
TCy	Annual total cost in year y
REVy	Annual generated revenues in year y
NPV	Net present value of the investments
N	Project life cycle and service time of the energy devices (25 years)
У	Year in the life cycle
r	Discount rate
i	Energy devices: GPU, HGPU, HST, electrolyzer, and PV
$CapEx_{y,i}$	Annual capital expenditures for the energy device i, excluding PV, in year y
$OpEx_{y,i}$	Annual operational expenditures for energy device i, in year y
COE_y	Annual cost of energy for hydrogen, electricity, and diesel in year y
$R_{\gamma}^{electricity}$	Annual revenue generated from selling excess of solar energy in year y
$R_y^{hydrogen}$	Annual revenue generated from selling excess of hydrogen in year y

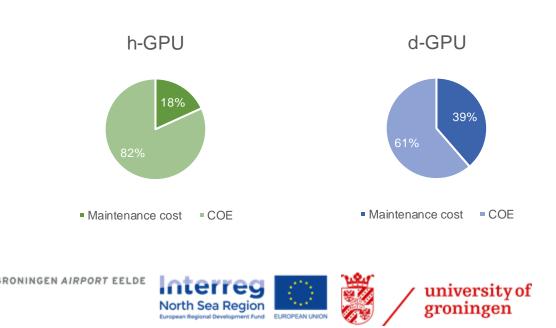
GRONINGEN AIRPORT EELDE

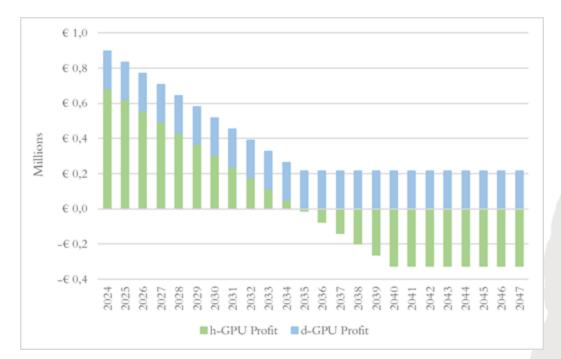
✓ university of groningen

SIMULATION AND COST MODEL

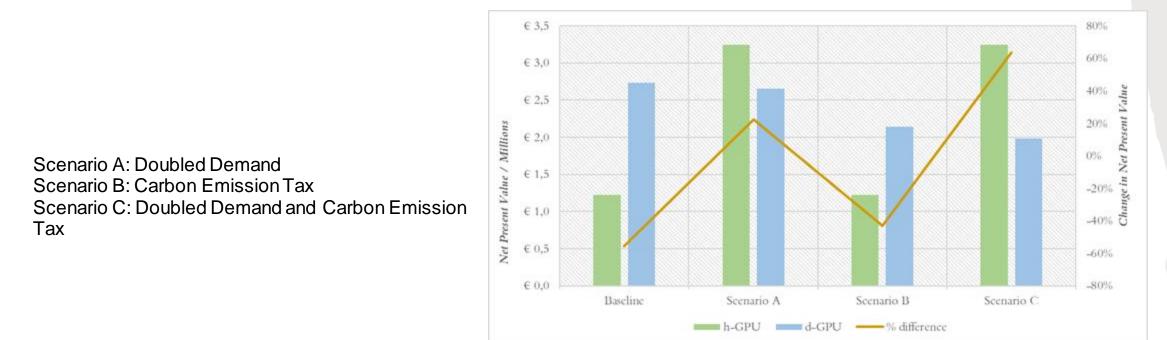
In scenario A, demand has doubled in size.

In scenario B, a carbon tax is introduced on the emitted carbon.


In scenario C, demand has doubled, and a carbon tax is implemented on the emitted carbon.


GRONINGEN AIRPORT EELDE

FINDINGS BASELINE


- Total capital investment required for the h-GPU is €200.000, whereas this stands at €85,000 for the d-GPU. If we consider the entire hydrogen infrastructure equipment, the total capital investment amounts to €1.2 million.
- The h-GPU may have higher energy costs, but it requires less maintenance costs during its lifetime than the d-GPU.
- The COE for the h-GPU is €143000, whereas this is €79,000 for the d-GPU since the per unit cost of hydrogen is higher than the per unit cost of diesel at the infancy stages of hydrogen economy.
- Hydrogen sales make up 46% of the overall revenue, while electricity sales constitute the remaining 54% for the h-GPU. The hydrogen production cost is predicted to be €5.97 per kg.

FINDINGS

Scenarios

The total cumulative revenue for the h-GPU and d-GPU is €8.3 million and €5.5 million, respectively.

Specifically, the NPVs of the h-GPU and d-GPU are approximately €1.2 million and €2.7 million, respectively, indicating a difference of 55%.

FINDINGS

•The advantages of economics of scale, by doubling demand, leads to a drop in the unit cost of hydrogen from €5.97 per kg to €3.80 per kg.

•The cost for the d-GPU increases due to the implementation of the carbon emission, causing for a lower NPV.

•H-GPU gains a market opportunity when demand is doubled as the NPV is a 22% higher than the d-GPU. Additionally, when carbon emission tax is implemented and demand is doubled the difference NPV increases to 63%.

DISCUSSION

- Sensitivity analyses
 - -electricity price,
 - -carbon tax,
 - -the diesel price.
- In conclusion, the results show that deploying a h-GPU system at an airport can lead the path to important market opportunities, particularly when considering increased flight frequencies and the adaptation of the carbon emission tax regulations.
- Transitioning to h-GPUs can be considered under adequate hydrogen demand that can stem from both airside and landside operations.

DISCUSSION: RECOMMENDATION

- Technological advancements in hydrogen to reduce the high investment costs associated with this technology, by implementing tax incentives, subsidies, loans, and grant programs.
- Training programs to provide the necessary skills and knowledge
- Provide supportive policies to facilitate the formation of hydrogen hubs
- Ensure the generated hydrogen is carbon-neutral and minimize conversion loss.
- Electrolyzer efficiency

European Regional Development Fund EUROPEAN UNION

REFERENCES

- ACI, S. (2019). What is net zero? Airports Council International Europe. Accessed by August 25, 2022, retrieved from https://www.aci-europe.org/netzero
- Balli, O., & Caliskan, H. (2022). Environmental impact assessments of different auxiliary power units used for commercial aircraft by using global warming potential approach. Environmental Science and Pollution Research, 29(58), 87334-87346.
- Barke, A., Thies, C., Melo, S. P., Cerdas, F., Herrmann, C., & Spengler, T. S. (2020). Socio-economic life cycle assessment of future aircraft systems. Procedia CIRP, 90, 262-267.
- Baroutaji, A, Wibeforce, T., Ramadan, M., & Olabi, A. G. (2019). Comprehensive investigation of hydrogen and fuel cell technology in the aviation and aerospace sectors. Renewable and sustainable energy reviews, 106, 31-40.
- Cetinkaya, E., Dincer, I., & Naterer, G. F. (2012). Life cycle assessment of various hydrogen production methods. *International journal of hydrogen energy*, 37(3), 2071-2080.
- Curran, M., 2015. Life Cycle Assessment Student Handbook. United Stated of America: Scrievener Publishing LCC.
- Dube, K., & Nhamo, G. (2019). Climate change and the aviation sector: A focus on the Victoria Falls tourism route. Environmental Development, 29, 5-15.
- Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and sustainable energy reviews, 39, 748-764.
- GAE (2022) Development of hydrogen-Ground Power Unit at Groningen Airport Eelde. Available at: https://www.groningenairport.nl/en/news/development-of-hydrogen-ground-power-unit-at-groningen-airport-eelde (Accessed: 5 February 2023).
- Glanz, S., & Schönauer, A. L. (2021). Towards a low-carbon society via hydrogen and carbon capture and storage: Social acceptance from a stakeholder perspective. Journal of Sustainable Development of Energy, Water and Environment Systems, 9(1), 1–18.
- . Goedkoop, M., Oele, M., de Schryver, A., Vieira, M., & Hegger, S. (2008). SimaPro database manual methods library. PRé Consultants, The Netherlands, 22-25.
- + Helmers, E., Lettão, J., Tietge, U., & Butler, T. (2019). CO2-equivalent emissions from European passenger vehicles in the years 1995–2015 based on real-world use Assessing the dimate benefit of the European "diesel boom". Atmospheric Environment, 198, 122-132.
- IRENA (2022) Global hydrogen trade to meet the 1.5°C dimate goal: Part I Trade outlook for 2050 and way forward. Abu Dhabi: International Renewable Energy Agency. Available at: www.iena.org/publications.
- Nielsen, E. (2020). In house production drastically reduces CO2 emissions. Retrieved from: https://biog.alpla.com/en/blog/company-economy/house-production-drastically-reduces-co2-emissions/10-20 Accessed on: 19th of January 2023.
- Papadis, E., & Tsatsaronis, G. (2020). Challenges in the decarbonization of the energy sector. Energy, 205, 118025.
- Oyyum, M. A., Dickson, R., Shah, S. F. A., Niaz, H., Khan, A., Liu, J. J., & Lee, M. (2021). Availability, versatility, and viability of feeds tocks for hydrogen production: Product space perspective. Renewable and Sustainable Energy Reviews, 145, 110843.
- Statista. (2022). Hours of sunshine in the Netherlands 1990-2021. https://www.statista.com/statistics/1012949/hours-of-sunshine-in-the-netherlands/Accessed on 10-11-2022 https://www.statista.com/statistics/276629/global-co2-emissions/ Accessed on 1st of January 2022.
- Testa, E., Giammusso, C., Bruno, M., & Maggiore, P. (2014). Analysis of environmental benefits resulting from use of hydrogen technology in handling operations at airports. Clean Technologies and Environmental Policy, 16(5), 875-890.
- Wu, M., Wu, Y., He, J., Xu, M., & Zhang, T. (2022). Science Direct Barrier identification, analysis and solutions of hydrogen energy sbrage application in multiple power scenarios based on improved DEMATAL- ISM approach. hternational Journal of Hydrogen Energy, 47(71), 30329–30346
- Wulf, C., & Kaltschmitt, M. (2018). Hydrogen supply chains for mobility—environmental and economic assessment. Sustainability, 10(6), 1699.
- Wulf, C., Reuß, M., Grube, T., Zapp, P., Robinius, M., Hake, J. F., & Stotten, D. (2018). Life Cycle Assessment of hydrogen transport and distribution options. Journal of cleaner production, 199, 431-443.
- Xiang, Y., Cai, H., Liu, J., & Zhang, X. (2021). Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution. Applied energy, 283, 116374.

European Regional Development Fund EUROPEAN UNION

"Thank You"

