

# SOCIAL INNOVATIONS FOR DELIVERING BLUE AND GREEN INFRASTRUCTURE:

Connecting multiple benefits, multiple stakeholders, and multiple disciplines

Policy Brief from the Interreg North Sea Region BEGIN project





# BACKGROUND TO BEGIN

The Interreg North Sea Region project BEGIN (2017-2021) aims to deliver Blue and Green Infrastructure through Social Innovation. The project is a unique partnership in which 10 cities and 6 research institutes combine forces to develop Blue and Green Infrastructure solutions (BGI) and exchange experiences. The urgency to construct BGI is growing, because climate change and urbanisation impact the resilience of our cities. To illustrate, we are faced with the increasing risk of local floods impacting our communities and urban environment, because drainage systems are struggling to cope with more frequent and intense rainfall. Moreover, cities increasingly experience a loss in biodiversity, feel the urgency of addressing heat stress and periods of drought, and want to promote citizens' health and wellbeing, to which BGI can contribute.

The utilisation of BGI can provide numerous opportunities when compared with traditional grey infrastructure to capitalize on multiple benefits and engage stakeholders, since BGI integrates (urban) drainage into and with disciplines such as urban design, city planning, environmental management and public health. Through BEGIN, 10 cities in the North Sea area are developing and implementing social innovation approaches in order to pursue the opportunities BGI offers in different BGI-oriented cases of varying scale and function, since up until now exploitation of these opportunities has been often overlooked. The BEGIN-project helps cities to identify, plan, value and deliver the benefits to those that could get the most from them. Likewise, BEGIN has supported cities in engaging stakeholders, including citizens, in a design process that could significantly enhance the liveability of their neighbourhoods.

Photo: Dordrecht, the Netherlands



## WHAT IS BGI?

Blue and Green Infrastructure (BGI) utilises natural and nature-based systems, providing multi-functional blue and green spaces in cities that are strategically planned and managed to provide not only water management benefits, but also a variety of ecological, social, and economic benefits<sup>1</sup>.

There are a wide range of BGI measures, such as green roofs, urban parks and rain gardens<sup>2</sup>. BGI is appealing because it provides attractive spaces and measures that can function in combination with existing urban systems. Moreover, the multi-functionality of BGI facilitates the integration of multiple societal goals, in which not only urban drainage is improved, but also public health, biodiversity, place-making and urban regeneration are supported.

Overwhelming evidence shows that, unlike traditional buried piped drainage, the use of BGI can increase property values and provide energy savings and carbon use reduction<sup>34</sup>. In application, BGI requires citizen engagement and cooperation among local governments and private and commercial stakeholders much more so than piped drainage systems, because BGI depends upon land use and thus also entails urban planning<sup>5</sup>.

 Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167-178.
 EC (2012). The Multifunctionality of Green Infrastructure. Brussels: European Commission (Directorate-General Environmant)

**4** Ashley, R., Gersonius, B., & Horton B. (2020). Managing flooding: from a problem to an opportunity. Philosophical Transactions of the Royal Society A, 378(2168).

5 Benedict, M. A., & McMahon, E. T. (2002). Green infrastructure: Smart conservation for the 21st Century. Renewable Resources Journal, 20(3), 12-17.

# WHAT IS SOCIAL INNOVATION?

The European Commission (2013) defines social innovation as the development and implementation of new ideas (products, services and models) to meet social needs and create new social relationships or collaborations<sup>6</sup>. Social innovation often demands regulatory, behavioural and cultural changes and is often entwined into three components<sup>7</sup>. Applied to the field of urban water management, the BEGIN-project has explored social innovation as part of a response to providing better public infrastructure that reduce flood risks, heat stress and biodiversity loss while simultaneously improving public wellbeing and economic development:

**1. New combinations:** these combinations relate to the multi-functional nature of BGI, which brings goals from different policy areas together. BGI does not just offer water management benefits, but improves the quality of life in cities (related to wellbeing, biodiversity, economic development etc.);

**2. Cutting across boundaries:** because of the involvement of different interests, knowledge, expertise and drivers are fragmented and dispersed among stakeholders. Therefore, organisational and disciplinary boundaries have to be crossed. Moreover, BGI depends on land use and has to be integrated into urban design and planning;

**3. Compelling new relationships:** the multiple benefits of BGI will often require and result in co-production and collaboration between governments (at all levels), local residents, developers, private landowners and others, that requires a shift away from a more traditional, hierarchical approaches by governments and sectoral 'experts', where for example 'the engineer knows best'.

<sup>1</sup> Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., ... & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107-115.

<sup>6</sup> EC (2013) Guide to Social Innovation. Brussels: European Commission (Directorate-General for Regional Policy).
7 Mulgan, G., Tucker, S., Ali, R., & Sanders, B. (2007). Social innovation: what it is, why it matters and how it can be accelerated. Oxford: Skoll Centre for Social Entrepreneurship, University of Oxford.













The main lessons from the social innovation initiatives developed in the BEGIN project are used to support this policy brief.

We set out four recommendations to ensure that BGI and its delivery is included in policies.

- 1. Identify the beneficiaries and their interests when making the case for **BGI**
- 2. Link the BGI to communities by demonstrating the value to them
- 3. Stimulate multi-departmental and multi-stakeholder collaborations for BGI delivery
- 4. Develop asset management principles and processes for BGI

LSBG Lande Brücke

Frafing

The next pages will discuss the recommendations in detail, providing practical advice, backed up with evidence from the BEGIN partners and their pilot projects.

The BEGIN partnership: ABERDEEN 









BAX & COMPANY/

Powered by:



PAGE 6



















# **RECOMMENDATION ONE**

Identify the beneficiaries and their interests when making the case for BGI

### **THE CHALLENGE:**

#### There are multiple business cases for BGI

Traditional grey infrastructure typically requires a single business case, because it provides a single function, although there may be multiple funders each of which may require a tailored business case. Since traditional grey infrastructure usually has a single purpose (e.g. flood risk reduction), the costs and benefits are usually well defined and making the case is relatively straightforward. In contrast, BGI has multiple benefits, including to ecology, recreation, economic development, and residents' wellbeing each potentially with overlapping and different beneficiaries. Because of the integrative character

of BGI projects, these are inherently more complex in planning, delivery and operation and require the collaboration of multiple stakeholders. Hence BGI usually requires bespoke business cases tailored for each of the many stakeholders and beneficiaries involved<sup>8</sup>. This means that for a BGI project there will be a wide range of potential benefits that need to be identified, requiring the valuation of these benefits and identification of beneficiaries. Partnerships will need to be established for funding to ensure that the wealth of benefits from using BGI will be delivered and sustained over time.

### THE SOCIAL INNOVATION:

### Define the benefits of your BGI and associate these with beneficiaries

Water managers need to become more familiar with the overlapping ambitions and requirements of using BGI to create synergies between the different services that may be provided. This means working with others in interdisciplinary teams, especially land use managers. Managing surface water runoff or reducing heat stress is just one purpose of using BGI. Branding the broader benefits will create broader support for the use of BGI. The multiple benefits of A strong, integrative brand can be sold more easily BGI have been defined in numerous guidance and supporting documents, for which tools, such as BEST (Benefits Estimation Tool) and TEEB-stad, can be used to identify and monetise the financial, social and environmental benefits provided by BGI4. Cities should develop strategic vision documents for BGI that illustrate the range of benefits and includes compelling messages to inspire and convince stakeholders to collaborate, and/or partner in the

delivery of BGI. Strategic vision documents should clearly identify who benefits from BGI, including landowners and communities benefitting from enhanced liveability, new recreation areas, better ecology or improved health. These elements have to be sequenced in a way that enables a compelling brand to be created, presenting the BGI as an opportunity that will boost the whole neighbourhood. to politicians, policymakers and citizens alike.

Stakeholder mapping can be used to identify who needs to be involved. Strategic vision documents should relate the BGI to developments in an area and reach out to the stakeholders involved. Moreover, collaboration becomes more likely if water managers and urban planners understand what drives these stakeholders. Potential stakeholders could include

other departments within the municipality, water and combined or aligned budgets of different municipal environmental authorities, regional governments, departments or partnerships with communities and businesses, or local NGOs. The BGI intervention, businesses, providing the means to build the BGI then, becomes a joint effort in which each party and maintain it over time. For example, communities contributes resources (financial, human, technology, can maintain with the support of the municipality, land) and receives rewards. To this end, different who provide the materials. types of business cases can be made, such as

## **ILLUSTRATIVE EXAMPLES** Strategic visioning for BGI



#### **A BLUE-GREEN VISION** City of Dordrecht

Dordrecht has developed a blue-green vision that demonstrates the multiple benefits of BGI for the city including climate adaptation, biodiversity, health and recreation. By not limiting the scope to only climate adaptation measures, Dordrecht City Council has succeeded in creating broad support and interest in the blue-green vision and two proposed blue-green zones in the city. The first area, the Dordtwijkzone, is aimed at integrating a patchwork of sport parks, fields and parks into a healthy and robust bluegreen zone accessible for every local resident. The second, the Wantijzone, will be a green corridor from the city centre right to the entrance of the Biesbosch National Park.

The Wantijzone green corridor



# City of Antwerp

WATER PLAN

Antwerp's Water Plan aims to create a water-sensitive city that can only be delivered by its government(s), businesses and community organisations collaborating. The document combines a hydrological and spatial blueprint with pragmatic BGI solutions. Several co-design workshops with a mix of stakeholders took place, in which design proposals for different locations in Antwerp were hydrologically calculated, spatially visualised and openly discussed. Consequently, the Water Plan is widely embraced by various stakeholders and sectors and acted upon.

The official Antwerp water plan



Ghent's vision for the green climate axes

**GREEN CLIMATE AXES** City of Ghent

Ghent City Council is working towards the creation of eight blue-green corridors so-called "green climate axes" - that connect the city centre with the outskirts of the city. The axes are meant to link smaller blue-green areas with each other in order to promote ecological values and climate adaptation measures (such as infiltration and retention). As these blue-green corridors will run through each neighbourhood, they will be easily accessible for all residents. Moreover, the corridors will be complemented with comfortable de-paved hiking and cycling paths for promoting active modes of transportation.

8 O'Donnell, E. C., Lamond, J. E., & Thorne, C. R. (2017). Recognising barriers to implementation of Blue-Green Infrastructure: a Newcastle case study. Urban Water Journal, 14(9), 964-971

# **ILLUSTRATIVE EXAMPLES**

### Stakeholder and opportunity mapping



Vision for the Mindemyren lightrail



Coca-cola funded the construction of wetlands



Aberdeen's new 'safe route to school'



Co-designing with communities

#### LIGHTRAIL DEVELOPMENT WITH OPPORTUNITIES FOR BGI City of Bergen

Large-scale urban developments such as transportation investments offer opportunities to include BGI. One of the major transformations in Bergen is in the industrial Mindemyren district that will be turned into a residential area. The construction of a lightrail from the city centre to Mindemyren is the first stage of development. Comprehensive planning of Bergen City Council ensured that infrastructure development is combined with other improvements such as BGI, resulting in the opening up of the canal that runs through the neighbourhood. The lightrail construction becomes more attractive with the provision of a linear blue-green space running through the area, which can be used for individual transport, including cycling, as well as for floodwater storage.

#### PRIVATE INVESTMENT FOR BGI Enfield London Borough Council

Private funding is available for BGI-related projects, yet often unknown to local authorities. Enfield Council and The Rivers Trust secured private investments from the Coca-Cola Foundation and WWF for the construction of wetlands in Broomfield Park that will reduce pollution in the nearby Pymmes Brook. Coca-Cola and WWF have established a water stewardship partnership, which grants financial support for small-scale projects that enhance water quality or quantity in local communities.

#### **ENGAGEMENT WITH ADJACENT LANDOWNERS** Aberdeen City Council

Through engaging with a housing developer on an adjacent site, Aberdeen City Council secured funding for the construction of a "safe route to school" foot and cycle-path through the site of the Maidencraig Flood Management Wetland Scheme. The private developer was willing to invest in this route, because the scheme would benefit its development. This route is providing an enhanced route to school for children living in the new housing development and a new and improved link between communities separated by the site.

#### **OPPORTUNITY MAPPING THROUGH BEST** Kent County Council

The B£ST-tool assisted Kent County Council to maximise the benefits of the investment in sustainable drainage systems (SuDS) aimed at flood risk reduction of twelve properties at Bell Road. Although flooding was the main driver for the project, the tool considered life-cycle costs of the SuDS with consideration of other benefits including biodiversity, air quality, and health and wellbeing. As a result, local beneficiaries beyond the properties were identified, such as the local school, hospital and local council. This approach facilitated relationships, which will enhance an ongoing stewardship and involvement of local stakeholders with the open space at George V Park.



# **RECOMMENDATION TWO**

Link the BGI to communities by demonstrating the value to them

#### **THE CHALLENGE:**

Making BGI a joint responsibility of public and private actors

BGI is typically built on the surface and is and community engagement become much more much more visible to citizens compared with important in delivering BGI than for traditional traditional grey infrastructure that is usually invisible infrastructure<sup>11,12</sup>. (underground) and therefore often unknown to the general public<sup>9</sup>. Managing water on the surface Establishing effective engagement (so activating means water visibly flows from place to place and may pass through various spaces and properties, collecting in low lying areas. Communities will occasionally need to understand and accept the need to have water on the surface where they do not normally see it. Much of these spaces can be blue or green and managing them as BGI can best be achieved by integrating them in urban plans for both public and private space. Consequently, managing BGI will need to become a shared responsibility for public and private actors<sup>10</sup>. Therefore, enterprise

citizens, communities and enterprises) has been challenging for urban water and city managers. Urban water management has traditionally been a highlyspecialised field. Approaches need to be found, to better relate the need for technical solutions, such as managing water on the surface, to citizens' daily life. Citizens and others need incentives to engage in this, because they consider 'water management' as someone else's responsibility for which they already pay taxes or a utility bill.

#### THE SOCIAL INNOVATION:

#### Activating communities through city-wide campaigns and neighbourhood champions

order to transform passive communities into more active BGI engaged communities. These need to be benefits and value from using BGI. How could, for tailored to the community, cultural context and local conditions.

innovative awareness raising campaigns. The measures could improve the city) and activation BEGIN-project demonstrates the importance techniques targeted at different stakeholder groups. of relating BGI (and use for climate change Since BGI interventions are typically constructed

The BEGIN-project recommends two pathways in challenges) to the daily life of residents and the wider community, thus emphasising the human example, BGI contribute to citizens' wellbeing?

City partners developed both **city-wide branding** Firstly, citizen interests can be activated through strategies (showing how BGI climate change on the surface rather than underground, the representatives or social entrepreneurs. Or they newly constructed blue-green elements can could be businesses engaging through corporate have multiple uses (see Recommendation 1). The social responsibility (CSR) initiatives. Relating multiple benefits offer opportunities to link the champions' interests to the BGI can provide a use of BGI with residents' and others daily life in the driving force for others to become engaged in the neighbourhood. Translating benefits clearly into BGI. In parallel, interactions with local champions how these help with citizens' daily life will engender can be formalised through voluntary agreements support at the neighbourhood-level for the BGI. or partnerships between the municipalities and the Secondly, a different strategy is needed for community for taking care of the BGI. This can ensure community engagement in specific projects. A longer-lasting interest in the BGI and potentially save major component is in **finding a way in through** costs for maintenance. For urban water managers, "local champions" who can help in actively this often requires the relinquishing of control when involving the community in the design, construction handing over responsibilities to communities, albeit and maintenance of the BGI. Champions should while still keeping an overview of the continuing ideally either live or work in the neighbourhood, performance of the BGI. such as voluntary groups, welfare workers, school

## **ILLUSTRATIVE EXAMPLES** City-wide branding



#### **RAIN GOTHENBURG** City of Gothenburg

With the launch of the Rain Gothenburg campaign, the Sewage and Water Department of Gothenburg City Council has emphasised the human dimensions of rainwater. Gothenburg is one of the rainiest cities in Europe, and the City Council would like to use this fact as an asset for urban development and city branding. The creation of new BGI is combined with art installations and outdoor classrooms. As a result, communities have become more familiar with both the challenges and pleasures related to urban rainwater and the potential of BGI. Moreover, communities can feel a sense of pride in how their city is dealing with rainwater in a positive, rather than a negative way.

Exploring rain in Jubilee park (Jubileumsparken)

## **ILLUSTRATIVE EXAMPLES Targeted** activation



Members of the RCA Service Design project

# SIGNS

#### Royal College of Arts, London

Students from the Royal College of Arts developed, together with municipality partners in the UK, new service designs to encourage communities to contribute to and take some ownership of their environment, and specifically new BGI. To illustrate, a new service design included an online platform which demonstrates how BGI schemes are planned, helping the public understand the decision-making process. A Community Garden Club was developed that helps connect children and parents with nature through gardening, but also provides opportunities for local authorities to set tasks that help maintain public space.

#### **ENGAGING COMMUNITIES THROUGH NEW SERVICE DE-**

<sup>9</sup> NAO (2004). Out of sight - not out of mind: Ofwat and the public sewer network in England and Wales. Report By The Comptroller And Auditor General. HC 161 Session 2003-2004: 16 January 2004

<sup>10</sup> Mees, H., & Driessen, P. (2019). A framework for assessing the accountability of local governance arrangements for adaptation to climate change. Journal of Environmental Planning and Management, 62(4), 671-691.

<sup>11</sup> Wilker, J., Rusche, K., & Rymsa-Fitschen, C. (2016). Improving participation in green infrastructure planning. Planning Practice & Research, 31(3), 229-249. 12 Willems, J. J., Molenveld, A., Voorberg, W., & Brinkman, G. (2020). Diverging ambitions and instruments for citizen participation across different stages in green infrastructure projects. Urban Planning, 5(1), 22-32.

## **ILLUSTRATIVE EXAMPLES**

Finding local champions



Firs Farm Wetlands, London

#### **PARTNERSHIPS WITH FRIENDS OF THE PARK** Enfield London Borough Council

Enfield Council has created wetlands in Firs Farm park, which can be used to collect surface water. A local community group – Friends of Firs Farm – has taken over the daily maintenance of the BGI. Members of this community meet weekly and the park has become an important community hub with plenty of activities. This can also be seen on the Friends' lively group page on Facebook.



# **RECOMMENDATION THREE**

Stimulate multi-departmental and multistakeholder collaborations for BGI delivery

### THE CHALLENGE:

#### A risk-averse culture in urban water management

In an increasingly complex society, where climate invention of underground drainage and sewers. The change is only one of the many challenges faced in cities, there is a shift from problem-centred thinking to 'opportunity-centred' thinking<sup>13</sup>. Integrated multifunctional approaches are gradually becoming the new standard for service and infrastructure provision all over Europe, delivering many benefits simultaneously, e.g. safe and attractive city spaces at the same time as alleviating urban heat. The demonstrated multiple benefits provided by BGI in BEGIN support this trend. This means that solely relying on technical engineering expertise does not suffice anymore.

The field of urban water management has historically been highly-specialised primarily the responsibility of a mono-culture of water engineers, focused on 'solving problems'<sup>14</sup>. This culture is known for its riskaversion, for example by relying on well-established techniques used largely unchanged since the

need to maintain public health and safety continues to encourage this approach, especially because of the fear of litigation after making mistakes. Tradition means that being the 'technical expert' can be used as a reason to consult with communities only in a rather limited way and to avoid innovations that appear risky.

The strong engineering-driven problem solving mono-culture may need to be challenged to ensure the appropriate incorporation of the wider contexts, behaviours and interdisciplinary approach essential for effective BGI delivery. For example, BGI use is dependent on land use planning and both land use planners and landscape/urban designers have the key role in what type of BGI is feasible and desirable in a particular context, albeit informed by the technical analysis provided by the engineer.

#### THE SOCIAL INNOVATION: Reform technical urban water management departments

The BEGIN-project has identified three directions required for ensuring the essential interdisciplinarity in the approach to urban water management. The first entails the appointment of internal **champions** in the organisation that cross departmental and administrative boundaries. These individuals typically have a rich social network and can easily bridge boundaries between organisations, viewpoints, and interests. BEGIN demonstrates that BGI projects need to be led by urban planning and

design departments, because of the spatial and land use requirements of BGI. As such, planners can link the different disciplines involved in the delivery of BGI, in which urban drainage is only one component of a BGI-project.

Thesecond direction is the creation of **planned spaces** for experimentation, also referred to as pilots, living labs or testbeds. This can foster cross-departmental working, to which the different departments

 Ashley, R., Gersonius, B., & Horton, B. (2020). Managing flooding: from a problem to an opportunity. Philosophical Transactions of the Royal Society A, 378(2168)
 Brown, R., Ashley, R., & Farrelly, M. (2011). Political and professional agency entrapment: an agenda for urban water research. Water Resources Management, 25(15), 4037-4050,

pilots (provided by teams or organisations dedicated can contribute. Creating a distinct organisational unit, in which unhelpful organisational structures to innovation) is often required to break through the and responsibilities are suspended, is a way to traditional practices that can stifle innovation. experiment with new ways of working and with Athird direction is becoming part of capacity building bringing different disciplines together. Pilots can **networks** that help in exchanging experiences and work towards tangible outcomes (a BGI-solution), lessons learned. BEGIN has used city2city-learning, which can be used as prototypes. This prototyping which has built on the inspiration of Learning and highlights the learning-by-doing element of pilots. Action Alliances as defined in the previous Interreg Moreover, pilots can help in shared meaning-making North Sea project MARE, and as now being used (aligning interests and viewpoints) and, thus, also in routinely for BGI planning and delivery<sup>15</sup>. building coalitions that help deliver the BGI. BEGIN demonstrates that external facilitation in these

## **ILLUSTRATIVE EXAMPLES** The appointment of internal champions



#### **BLUE-GREEN DEPARTMENT** City of Dordrecht

After the local elections in 2017, the City of Dordrecht defined a few city-wide challenges. One of these was to become a climate-adaptive, blue-green city, utilising BGI. To this end, a new organisational unit was established with limited financial resources. Therefore, the unit had to interact with other departments and bring together different disciplines in order to be able to deliver the planned BGIs. Meetings were often organised at the SpuiLab210, a location separated from the City Council in order to appeal to more stakeholders. The team successfully created a large network both inside and outside the City Council to mainstream BGI solutions and strategies to the entire municipality.

The Spuil ab210 in Dordrecht



Interdisciplinary working in Bradford

#### DEPARTMENT OF PLACE City of Bradford Metropolitan District Council

The establishment of the Department of Place in Bradford Council facilitated interdisciplinary working, since all disciplines that were involved in the physical environment are currently located in the same department. For the restoration of the Bradford Beck, landscape architects, highway planners, engineers, biodiversity and health officials currently work together more easily, compared with how it used to be when the urban drainage department was in the lead.

## **ILLUSTRATIVE EXAMPLES**

Planned experimentation spaces



Antwerp's urban living lab

#### CITYLAB SINT-ANNEKE PLAGE City of Antwerp

Antwerp City Council started an Urban Living Lab as part of the redevelopment of Sint-Anneke Plage. The city aims to heighten the dykes for flood protection against sea level, to create more tidal nature, and to re-design the public domain with a key role for blue-green spaces and solutions. The lab brought together several experts, local landowners, NGOs, and residents to jointly develop a vision for the area with a key role for blue-green spaces and solutions. The City of Antwerp facilitated this process through its CityLab2050 department and external facilitators. The lab developed innovative ideas and inspiration for the design of public space and created a better understanding among local stakeholders and a willingness to act. The lab also improved interdepartmental cooperation within Antwerp City Council.

### **ILLUSTRATIVE EXAMPLES** Capacity building networks



Interdisiplinary seminar on new Storm water masterplan

# STRONGER POSITIONING OF BGI BECAUSE OF MORE INTERDEPARTMENTAL COOPERATION

#### City of Bergen

The fifteen years of experience in Interreg projects has led to increased interdepartmental cooperation in Bergen City Council. To illustrate, BGI plays a central role in recent strategic plans, so new urban development should incorporate BGI. Interdepartmental cooperation also works on the project level. Several municipal departments contribute their expertise to the urban regeneration project in Mindemyren, in which for example lightrail development, real estate development and environmental management act in concert. As part of the BEGIN project, a dedicated working group was formed in which the different municipal disciplines come together monthly. The discussions in this group led to a new design for the planned BGI in Mindemyren. The new structure consists of both an open channel on the surface and a buried channel designed to handle flooding.



# **RECOMMENDATION FOUR**

Develop asset management principles and processes for BGI

#### **THE CHALLENGE:**

#### Fitting BGI into established asset management processes

BGI, like other systems and services, provides records and depreciation schemes that are used to an important societal function that needs to be maintained over the expected lifetime. Unlike traditional drainage infrastructure, BGI provides multiple benefits, each of which needs to be sustained by appropriate maintenance, repair, renovation and replacement. Traditional infrastructural assets are maintained in accordance with well-established standards like ISO 55000 and owners and operators are clear about how to do this to maximise value.

BGI is different as it provides many functions, or benefits and, being nature-based, is often self-generative<sup>16,</sup> i.e. may function even without maintenance. Hence managing BGI assets requires a new vision and approach from that used for traditional asset management. Most drainage schemes that include BGI will also include some components of traditional piped drainage, for example, to interconnect each BGI measure, and for some, there may need to be substantial buried infrastructure, depending on local circumstances. Hence many schemes will in future be hybrids, i.e. scenario planning option<sup>19</sup>. using both BGI and pipe or tank systems<sup>17</sup>. Monitoring

manage the lifecycle of existing grey infrastructure need to be adapted or modified for hybrid and BGI assets. Furthermore, the multi-functional nature of BGI requires a wider set of performance indicators. In short: most BGI does not fit with the typical asset management frameworks that have been developed for grey infrastructures. To illustrate, only recently has BGI been considered as an asset, being labelled as 'a sewer' in the UK<sup>18</sup>. Nonetheless, this does not capture the need to maintain the multi-functional nature of BGL

Widespread applications of BGI are still in their infancy, hampering insight into the long-term requirements and effects of maintaining and operating BGI. Hence, there is considerable uncertainty about the lifecycle performance of BGI and to what extent the BGI can continue to deliver the benefits that have been predicted at the design stage. So far, most attention has been paid to the short-term for BGI use, despite tools like B£ST including a long-term

### THE SOCIAL INNOVATION: Reform technical urban water management departments

More experience of the lifecycle performance, benefits estimated in the design and planning stages as well as the short-term performance and benefits is required. This assessment will allow for refinement of BGI assets is required, as BGI is increasingly in assumptions, useful for planning, designing and being used. Better monitoring and evaluation of the operating existing and future BGI. For instance, the

assessment can enhance the uptake of BGI, since need to be used for BGI the benefits of BGI become more evidence-based. This would produce a better demonstration of the The findings will also improve current asset benefits that can be expected, and which benefits management principles and processes. may be more challenging to achieve and maintain Consequently, these principles can become better over time. This will help policymakers across Europe focused on managing BGI assets for maximum in their decision-making and make investing in value. The ISO-standards used in traditional asset BGI less of a risky business. Traditional flood risk management can be refined in order to fully capture management infrastructure is invariably designed the scope of BGI value provision, rather than trying for the longer term and established processes are to force asset management processes used for grey infrastructure to work for BGI schemes. being used to assess the robustness, based on asset management processes. The same approaches

## **ILLUSTRATIVE EXAMPLES** More experience of lifecycle performance

#### **PILOT SEMI-PAVED CAR PARKING** City of Antwerp

Antwerp City Council has started a pilot for semi-paved parking in order to improve the infiltration capacity. Asset managers will monitor the performance of this paving, so evidence will be gathered about the contribution of the BGI.

#### MONITORING USE AND IDENTIFYING TRENDS City of Aberdeen

Maidencraig Flood Management Wetland Scheme Phase 2 includes the construction of several footpaths through the wetlands. Permanent pedestrian and cycle counters will be installed in three locations to monitor use and identify trends.

#### **ENVIRONMENTAL VOLUNTEERING FOR BGI** MAINTENANCE

Enfield town

The maintenance of BGI is easier to identify (compared to grey infrastructure), as it is constructed above ground. This offers opportunities for including engaged citizens in identifying issues and reporting, for example via online apps. In Enfield, Firs Farm Eco Club and its Children's Club help the local council with cleaning up the wetlands.

## **ILLUSTRATIVE EXAMPLES** Improve asset management principles

#### **NEW DECISION-MAKING FRAMEWORKS** City of Hamburg

LBSG in Hamburg has developed a decision matrix for BGI that integrate and weigh different functionalities such as infiltration, retention, ecosystem values, and recreation. Also, safety regulations are linked to nature-based filter and retention basins, resulting in better asset management principles for BGI.

#### **GUIDELINES FOR BGI IN PUBLIC SPACE MANUALS** City of Ghent

The fourth version of the Integrative Plan Public Space of Ghent City Council consists of guidelines for designing climaterobust public spaces (streets, squares) for new urban developments. The new guidelines should result in not only more green space in the public domain, but also give way to cyclists and pedestrians and simultaneously reduce car use.



<sup>16</sup> Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., ... & Mikkelsen, P. S. (2015). SUDS, LID, BMPs, WSUD and more-The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542.

<sup>17</sup> EU (2019) Natural Capital Accounting: Overview and Progress in the European Union. 6th Report. Brussels: European Union. ISBN 978-92-79-89744-3.

<sup>18</sup> Water UK. (2019). Sewers for adoption in England. A changed approach to surface water sewers. London: Water UK. 19 Ashley R M., et al., (2018). Evaluating the longer term benefits of sustainable drainage. Proceedings of the Institution of Civil Engineers Water Management, 171(2), 57-66



# **AUTHORS**

Dr Jannes Willems (Erasmus University Rotterdam; willems@essb.eur.nl) Prof Richard Ashley (IHE-Delft; r.ashley@sheffield.ac.uk) Dr William Veerbeek (IHE-Delft; w.veerbeek@un-ihe.org) Dr Sebastiaan van Herk (Bax & Company; s.vanherk@baxcompany.com) Ellen Kelder (City of Dordrecht, etg.kelder@dordrecht.nl)

# ACKNOWLEDGEMENTS

We would like to thank Paul Shaffer (CIRIA), Berry Gersonius (City of Dordrecht) Astrid Molenveld (Erasmus University Rotterdam), Sofia Aivalioti and Max Berkelmans (Bax & Company) for their comments on earlier versions of this document. We would also like to thank the BEGIN city partners for their input during the workshops in Bergen (May 2019), Bradford (September 2019) and online (March 2020) organised for developing the policy brief.

# THE BEGIN PARTNERSHIP

**Belgium:** City of Antwerp; City of Ghent **Germany:** Agency for Roads Bridges and Waters, Hamburg; Hamburg University of Technology

**The Netherlands:** City of Dordrecht; IHE Delft; Erasmus University Rotterdam **Norway:** City of Bergen

Sweden: City of Gothenburg

**United Kingdom:** Construction Industry Research Information Association (CIRIA); City of Bradford Metropolitan District Council; Kent County Council; Aberdeen City Council; Enfield City Council; Royal College of Arts; University of Sheffield

An interactive version of this policy brief can be explored at **baxcompany.com/begin-policy-brief** 

